Progress-servis55.ru

Новости из мира ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Функция прогноз в excel

Создание прогноза в Excel для Windows

Если у вас есть статистические данные с зависимостью от времени, вы можете создать прогноз на их основе. При этом в Excel создается новый лист с таблицей, содержащей статистические и предсказанные значения, и диаграммой, на которой они отражены. С помощью прогноза вы можете предсказывать такие показатели, как будущий объем продаж, потребность в складских запасах или потребительские тенденции.

Создание прогноза

На листе введите два ряда данных, которые соответствуют друг другу:

ряд значений даты или времени для временной шкалы;

ряд соответствующих значений показателя.

Эти значения будут предсказаны для дат в будущем.

Примечание: Для временной шкалы требуются одинаковые интервалы между точками данных. Например, это могут быть месячные интервалы со значениями на первое число каждого месяца, годичные или числовые интервалы. Если на временной шкале не хватает до 30 % точек данных или есть несколько чисел с одной и той же меткой времени, это нормально. Прогноз все равно будет точным. Но для повышения точности прогноза желательно перед его созданием обобщить данные.

Выделите оба ряда данных.

Совет: Если выделить ячейку в одном из рядов, Excel автоматически выделит остальные данные.

На вкладке Данные в группе Прогноз нажмите кнопку Лист прогноза.

В окне Создание листа прогноза выберите график или гистограмму для визуального представления прогноза.

В поле Завершение прогноза выберите дату окончания, а затем нажмите кнопку Создать.

В Excel будет создан новый лист с таблицей, содержащей статистические и предсказанные значения, и диаграммой, на которой они отражены.

Этот лист будет находиться слева от листа, на котором вы ввели ряды данных (то есть перед ним).

Настройка прогноза

Если вы хотите изменить дополнительные параметры прогноза, нажмите кнопку Параметры.

Здесь вы найдете сведения о каждом из вариантов в приведенной ниже таблице.

Выберите дату, с которой должен начинаться прогноз. При выборе даты начала, которая наступает раньше, чем заканчиваются статистические данные, для построения прогноза используются только данные, предшествующие ей (это называется «ретроспективным прогнозированием»).

Если вы задаете прогноз до последней исторической точки, вы сможете оценить точность прогноза, так как вы можете сравнить прогнозируемые ряды с фактическими данными. Но если начать прогнозирование со слишком ранней даты, построенный прогноз может отличаться от созданного на основе всех статистических данных. При использовании всех статистических данных прогноз будет более точным.

Если в ваших данных прослеживаются сезонные тенденции, то рекомендуется начинать прогнозирование с даты, предшествующей последней точке статистических данных.

Установите или снимите флажок Доверительный интервал, чтобы показать или скрыть его. Доверительный интервал — это диапазон вокруг каждого предсказанного значения, в который в соответствии с прогнозом (при нормальном распределении) предположительно должны попасть 95 % точек, относящихся к будущему. Доверительный интервал помогает определить точность прогноза. Чем он меньше, тем выше достоверность прогноза для данной точки. Доверительный интервал по умолчанию определяется для 95 % точек, но это значение можно изменить с помощью стрелок вверх или вниз.

Сезонность является числом для длины (количеством очков) шаблона сезонов и автоматически определяется. Например, в ежегодном цикле продаж с каждой точкой, представляющей месяц, сезонность составляет 12. Вы можете переопределить автоматическое обнаружение, выбрав параметр вручную , а затем выбрав номер.

Примечание: Если вы хотите задать сезонность вручную, не используйте значения, которые меньше двух циклов статистических данных. При таких значениях этого параметра приложению Excel не удастся определить сезонные компоненты. Если же сезонные колебания недостаточно велики и алгоритму не удается их выявить, прогноз примет вид линейного тренда.

Диапазон временной шкалы

Здесь можно изменить диапазон, используемый для временной шкалы. Этот диапазон должен соответствовать параметру Диапазон значений.

Здесь можно изменить диапазон, используемый для рядов значений. Этот диапазон должен совпадать со значением параметра Диапазон временной шкалы.

Заполнить отсутствующие точки с помощью

Для обработки отсутствующих точек в Excel используется интерполяция, что означает, что пропущенная точка будет выполнена как взвешенное среднее арифметическое соседних точек, пока не пройдет менее 30% точек. Чтобы вместо отсутствующих точек обрабатывались нули, в списке выберите ноль .

Объединение дубликатов с помощью

Если данные содержат несколько значений с одной меткой времени, Excel находит их среднее. Чтобы использовать другой метод вычисления (например, медиана или счёт), выберите нужный вариант вычисления из списка.

Включить статистические данные прогноза

Установите этот флажок, если хотите поместить на новом листе дополнительную статистическую информацию о прогнозе. При этом добавляется таблица статистики, созданной с помощью прогноза. ETS. STAT и включает в себя меры, например коэффициент сглаживания (альфа, бета, гамма) и метрики ошибок (Масе, смапе, мае, рмсе).

Формулы, используемые при прогнозировании

При использовании формулы для создания прогноза возвращаются таблица со статистическими и предсказанными данными и диаграмма. Прогноз предсказывает будущие значения на основе имеющихся данных, зависящих от времени, и алгоритма экспоненциального сглаживания (ETS) версии AAA.

Таблицы могут содержать следующие столбцы, три из которых являются вычисляемыми:

столбец статистических значений времени (ваш ряд данных, содержащий значения времени);

столбец статистических значений (ряд данных, содержащий соответствующие значения);

столбец прогнозируемых значений (вычисленных с помощью функции ПРЕДСКАЗ.ЕTS);

два столбца, представляющие доверительный интервал (вычисленные с помощью функции ПРЕДСКАЗ.ЕTS.ДОВИНТЕРВАЛ). Эти столбцы отображаются только в том случае, если в разделе » Параметры » установлен флажок » доверительный интервал «.

Скачайте пример книги.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community, попросить помощи в сообществе Answers community, а также предложить новую функцию или улучшение на веб-сайте Excel User Voice.

См. также:

Примечание: Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Была ли информация полезной? Для удобства также приводим ссылку на оригинал (на английском языке).

Функция ПРЕДСКАЗ для прогнозирования будущих значений в Excel

Функция ПРЕДСКАЗ в Excel позволяет с некоторой степенью точности предсказать будущие значения на основе существующих числовых значений, и возвращает соответствующие величины. Например, некоторый объект характеризуется свойством, значение которого изменяется с течением времени. Такие изменения могут быть зафиксированы опытным путем, в результате чего будет составлена таблица известных значений x и соответствующих им значений y, где x – единица измерения времени, а y – количественная характеристика свойства. С помощью функции ПРЕДСКАЗ можно предположить последующие значения y для новых значений x.

Читать еще:  Vba excel проверка наличия файла

Примеры использования функции ПРЕДСКАЗ в Excel

Функция ПРЕДСКАЗ использует метод линейной регрессии, а ее уравнение имеет вид y=ax+b, где:

  1. Коэффициент a рассчитывается как Yср.-bXср. (Yср. и Xср. – среднее арифметическое чисел из выборок известных значений y и x соответственно).
  2. Коэффициент b определяется по формуле:

Пример 1. В таблице приведены данные о ценах на бензин за 23 дня текущего месяца. Согласно прогнозам специалистов, средняя стоимость 1 л бензина в текущем месяце не превысит 41,5 рубля. Спрогнозировать стоимость бензина на оставшиеся дни месяца, сравнить рассчитанное среднее значение с предсказанным специалистами.

Вид исходной таблицы данных:

Пример 1.» src=»https://exceltable.com/funkcii-excel/images/funkcii-excel145-2.png» >

Чтобы определить предполагаемую стоимость бензина на оставшиеся дни используем следующую функцию (как формулу массива):

  • A26:A33 – диапазон ячеек с номерами дней месяца, для которых данные о стоимости бензина еще не определены;
  • B3:B25 – диапазон ячеек, содержащих данные о стоимости бензина за последние 23 дня;
  • A3:A25 – диапазон ячеек с номерами дней, для которых уже известна стоимость бензина.

Рассчитаем среднюю стоимость 1 л бензина на основании имеющихся и расчетных данных с помощью функции:

Можно сделать вывод о том, что если тенденция изменения цен на бензин сохранится, предсказания специалистов относительно средней стоимости сбудутся.

Анализ прогноза спроса продукции в Excel по функции ПРЕДСКАЗ

Пример 2. Компания недавно представила новый продукт. С момента вывода на рынок ежедневно ведется учет количества клиентов, купивших этот продукт. Предположить, каким будет спрос на протяжении 5 последующих дней.

Вид исходной таблицы данных:

Пример 2.» src=»https://exceltable.com/funkcii-excel/images/funkcii-excel145-6.png» >

Как видно, в первые дни спрос был небольшим, затем он рос достаточно большими темпами, а на протяжении последних трех дней изменялся незначительно. Это свидетельствует о том, что основным фактором роста продаж на данный момент является не расширение базы клиентов, а развитие продаж с постоянными клиентами. В таких случаях рекомендуют использовать не линейную регрессию, а логарифмический тренд, чтобы результаты прогнозов были более точными.

Рассчитаем значения логарифмического тренда с помощью функции ПРЕДСКАЗ следующим способом:

Как видно, в качестве первого аргумента представлен массив натуральных логарифмов последующих номеров дней. Таким образом получаем функцию логарифмического тренда, которая записывается как y=aln(x)+b.

Для сравнения, произведем расчет с использованием функции линейного тренда:

И для визуального сравнительного анализа построим простой график.

Как видно, функцию линейной регрессии следует использовать в тех случаях, когда наблюдается постоянный рост какой-либо величины. В данном случае функция логарифмического тренда позволяет получить более правдоподобные данные (более наглядно при большем количестве данных).

Прогнозирование будущих значений в Excel по условию

Пример 3. В таблице Excel указаны значения независимой и зависимой переменных. Некоторые значения зависимой переменной указаны в виде отрицательных чисел. Спрогнозировать несколько последующих значений зависимой переменной, исключив из расчетов отрицательные числа.

Вид таблицы данных:

Для расчета будущих значений Y без учета отрицательных значений (-5, -20 и -35) используем формулу:

C помощью функций ЕСЛИ выполняется перебор элементов диапазона B2:B11 и отброс отрицательных чисел. Так, получаем прогнозные данные на основании значений в строках с номерами 2,3,5,6,8-10. Для детального анализа формулы выберите инструмент «ФОРМУЛЫ»-«Зависимости формул»-«Вычислить формулу». Один из этапов вычислений формулы:

Особенности использования функции ПРЕДСКАЗ в Excel

Функция имеет следующую синтаксическую запись:

  • x – обязательный для заполнения аргумент, характеризующий одно или несколько новых значений независимой переменной, для которых требуется предсказать значения y (зависимой переменной). Может принимать числовое значение, массив чисел, ссылку на одну ячейку или диапазон;
  • известные_значения_y – обязательный аргумент, характеризующий уже известные числовые значения зависимой переменной y. Может быть указан в виде массива чисел или ссылки на диапазон ячеек с числами;
  • известные_значения_x – обязательный аргумент, который характеризует уже известные значения независимой переменной x, для которой определены значения зависимой переменной y.
  1. Второй и третий аргументы рассматриваемой функции должны принимать ссылки на непустые диапазоны ячеек или такие диапазоны, в которых число ячеек совпадает. Иначе функция ПРЕДСКАЗ вернет код ошибки #Н/Д.
  2. Если одна или несколько ячеек из диапазона, ссылка на который передана в качестве аргумента x, содержит нечисловые данные или текстовую строку, которая не может быть преобразована в число, результатом выполнения функции ПРЕДСКАЗ для данных значений x будет код ошибки #ЗНАЧ!.
  3. Статистическая дисперсия величин (можно рассчитать с помощью формул ДИСП.Г, ДИСП.В и др.), передаваемых в качестве аргумента известные_значения_x, не должна равняться 0 (нулю), иначе функция ПРЕДСКАЗ вернет код ошибки #ДЕЛ/0!.
  4. Рассматриваемая функция игнорирует ячейки с нечисловыми данными, содержащиеся в диапазонах, которые переданы в качестве второго и третьего аргументов.
  5. Функция ПРЕДСКАЗ была заменена функцией ПРЕДСКАЗ.ЛИНЕЙН в Excel версии 2016, но была оставлена для обеспечения совместимости с Excel 2013 и более старыми версиями.
  6. Для предсказания только одного будущего значения на основании известного значения независимой переменной функция ПРЕДСКАЗ используется как обычная формула. Если требуется предсказать сразу несколько значений, в качестве первого аргумента следует передать массив или ссылку на диапазон ячеек со значениями независимой переменной, а функцию ПРЕДСКАЗ использовать в качестве формулы массива.

Как сделать прогноз в Эксел

Здравствуйте, уважаемые читатели блога http://nocleep.ru/. Сегодня хочу поделиться информацией, как с помощью программы Excel можно легко и быстро обработать статистические данные и сделать прогноз.

Прогнозирование является неотъемлемой частью планирования. Это может понадобиться, когда Вам необходимо оценить затраты следующего года или предсказать ожидаемые результаты в будущем. В общем задача довольно актуальная сейчас.

И, если у Вас есть статистические данные с зависимостью от времени, то вы можете создать на их основе прогноз на то количество лет, которое Вам нужно. Также с помощью прогноза Вы можете предсказывать показатели: будущего объема продаж, потребность в складских запасах или потребительские тенденции.

Вариантов построения прогноза достаточное много, я же хочу показать, как можно сделать простой, жизнеспособный прогноз «на скорую руку». Ведь каким бы точным ни был Ваш прогноз – это всего лишь предположение, и никто не может быть уверенным в том: что и как будет развиваться в будущем.

К слову о будущем))) Наступил Новый год, и когда закончатся все праздники, можно браться за выполнение отложенных дел, планов и мечт. В соответствии с этим, рекомендую прочитать статью «Как начать делать то, что хочется». Может быть полезной.

Продолжаем. При помощи встроенных в Excel функций можно построить довольно неплохой прогноз, чем мы с Вами сейчас и займемся. В итоге получим красивый график с прогнозом. Примерно, вот такой, а может быть и лучше:

Читать еще:  Как сделать формат числа в excel

1 шаг. Исходные данные. Где взять?

Нам нужны исходные данные. Где их взять? На сайтах статистики, конечно. Я для своих статей беру данные на сайте Федеральной Службы Государственной Статистики. Для этого необходимо покопаться в разделе «Официальная статистика» или «Базы данных».

2 шаг. Исходные данные. Как скачать?

Для расчета прогноза потребуются данные за конкретный период. Чем больше данных, тем точнее будет прогноз. Желательно, чтобы были помесячные данные хотя бы за два года или за несколько лет. Для своего примера я скачаю данные «Число персональных компьютеров в организациях» с 2003 по 2014 годы. И составлю прогноз на 5 лет, т.е. до 2019 года. Для этого нужно:

1) Зайти на сайт Федеральной Службы Государственной Статистики, «Официальная статистика», далее захожу где «Наука, инновации и информационное общество».

2) Выбираю «Информационное общество», затем «Информационные и коммуникационные технологии», скачиваю таблицу с данными Excel.

3 шаг. Подготовка данных для расчета прогноза на 5 лет

Итак, данные у нас есть. Что с ними необходимо сделать?

Во-первых, мне для простого прогноза не нужны все данные таблицы, поэтому, я удаляю лишние строки, оставив только необходимую информацию для прогноза. А именно: года, и «Число персональных компьютеров в обследованных организациях — всего, тыс. шт.». Вот что должно остаться:

Во-вторых, данные для прогноза необходимо транспонировать, т.е. выстроить их в вертикальную таблицу. Для этого необходимо:
1) Выделить всю таблицу.
2) Буфер обмена/«Копировать»
3) Выделить новую ячейку, куда будете вставлять транспонированную таблицу.
4) Буфер обмена/«Вставить/Специальная вставка/Транспонировать»

В итоге получаем вертикальную таблицу:

В-третьих, для того, чтобы точки будущего прогноза встали на одну линию, необходимо переименовать годы в цифры: 1, 2, 3, 4, 5 и т.д.

Готово! Теперь можно приступать к постройке графика.

4 шаг. Постройка графика

Построим точечную диаграмму с линиями. Для этого необходимо:
1) Выделить вертикальную таблицу (оба столбца с шапкой).
2) Дальше идем: Вставка/Диаграммы/Точечная/Точечная с гладкими отрезками и маркерами. Получаем вот такой график:

3) Для удобства уберем с графика все линии. Для этого, выделяем сначала горизонтальные линии/Delete (на клавиатуре), аналогично выделяем вертикальные линии/ Delete (на клавиатуре). Вот так:

4) Добавим легенду. Для этого нужно щелкнуть по таблице, в правом верхнем углу появится крестик. Щелкнув по нему, выбираем — легенда. В результате появится надпись:

5 шаг. Строим прогноз на 5 лет

1) Если мы планируем построить прогноз на 5 лет, то соответственно, нужно продлить столбец с цифрами 1, 2, 3, 4, 5 и т.д. на 5 ячеек. Помните, что они у нас заменят года? Я их для вас выделила желтым цветом. Получаем продленную таблицу следующего вида:

2) Добавим линию тренда. Для этого необходимо: щелкнуть правой кнопкой мыши по знакомому нам крестику в правом верхнем углу таблицы/выбрать «Линия тренда». На графике появится линейная функция.

3) Щелкнув по линии тренда мышкой два раза, открывается окно «Формат линии тренда».

Что мы можем с этим делать?

Во-первых, в моем случае все линии на графике будут появляться голубого цвета, так как именно этот цвет запрограммирован по умолчанию. Поэтому, чтобы не запутаться, предлагаю всем новым линиям менять цвета. Для этого переходим во вкладку, где изображено ведерко с краской, устанавливаем точку, где «Сплошная линия», выбираем цвет, например, «Синий».

Во-вторых, для дальнейших расчетов необходимо получить уравнение и коэффициент тесноты связи . Для этого: возвращаемся в предыдущую вкладку «Параметры линии тренда», и устанавливаем две галочки в самом низу: «показать уравнение на диаграмме» и «поместить на диаграмму величину достоверности аппроксимации». Также установим «Прогноз» вперед на 5 периодов. Как здесь:

В-третьих, рекомендую полученное уравнение и коэффициент тесноты связи также покрасить в синий цвет, что и линия тренда. Так Вы никогда не перепутаете, какое уравнение к какой линии тренда относится. Для этого: щелкаем по уравнению, чтобы выделить прямоугольник для закрашивания, справа переходим во вкладку, где ведерко с краской. Выбираем: «Заливка» — «Сплошная заливка» — «Цвет» — синий. Готово!

4) Аналогично строим пять линий трендов разными цветами, включая уравнения коэффициент тесноты связи. Получаем следующее:

5) Для постановки точек прогноза выбираем уравнение, где коэффициент тесноты связи R² — наибольшее число. В моем случае это «Полиномиальный тренд» с уравнением и теснотой связи:

6) Теперь внимательно. Выбранное уравнение нужно набрать языком Excel в ячейке начала прогноза.

Как должно выглядеть уравнение на языке Excel?

Например, мое уравнение:

y = -0,1837×2 + 2,9289x + 83,664

на языке ексел будет выглядеть так:

=-0,1837*A18^2+2,9289*A18+83,664

Что я сделала?
— убрала «y», потому что в Excel все формулы начинаются со знака «=»,
— ввела знак умножения «*» — в Excel он обозначается звездочкой,
— подставила вместо «х» — число года начала прогноза, в моем случае это «А18»,
— ввела знак, обозначающий степень «^».

В какую ячейку вводить уравнение?

Я ввожу в ячейку «В18», и получаю первую цифру прогноза на 2015 год (вы же помните, что все года мы заменили порядковыми цифрами?).

7) Аналогичным способом вводим уравнение на все 5 лет прогноза, не забывая заменять адрес ячейки года. У меня это выглядит вот так (уравнение справа поставила для вас).

Теперь добавим полученные точки прогноза на график. Для этого нужно добавить ряды — щелкнуть по области графика правой кнопкой мыши/Выбрать данные/Добавить. Дать название ряда «Прогноз на 2015 год». Ввести значения х и y: «х» — обозначение года 2015, в моем случае он заменен цифрой «13» (ячейка «А18»), а «y» — полученное число прогноза на 2015 год в ячейке «В18».

9) Аналогичным образом вводим остальные четыре точки.

В итоге получаем прогноз на 5 лет. Я увлеклась и составила прогноз с 2015 по 2020 год, который говорит о том, что число персональных компьютеров в организациях, будет снижаться.

Итог

Вот так легко и быстро с помощью Excel можно обработать статистические данные и составить неплохой прогноз, который украсит любую вашу научную работу.

Прогнозирование продаж в Excel с учетом сезонности

В прошлой статье мы уже разобрали, что такое временной ряд и функцию тренда. Теперь подробнее разберемся с терминологией и остановимся на одной из моделей временного ряда.

Читать еще:  Перевод формулы в значение excel

Из чего состоит временной ряд

Уровни временного ряда (Yt) представляют из себя сумму двух компонент:

  1. Регулярную составляющую
  2. Случайную составляющую

В свою очередь регулярная составляющая состоит из:

  1. Тренда
  2. Сезонности
  3. Циклической составляющей

Однако, в модели необязательно наличие всех этих компонент сразу.

Случайная компонента отражает влияние случайных возмущений на модель, которые по отдельности имеют незначительное воздействие, но суммарно их влияние ощущается.

То есть, в общем случае временной ряд представляет из себя наличие четырех составляющих:

  1. Тренд (Tt)
  2. Сезонность (St)
  3. Цикличность (Ct)
  4. Случайные возмущения (Et)

Циклическая компонента, по сравнению с сезонностью, имеет более длительный эффект и меняется от цикла к циклу. Поэтому, ее обычно объединяют с трендом.

Виды моделей временного ряда

Обычно, выделяют две модели временного ряда и третью — смешанную.

    Аддитивная модель

Мультипликативная модель

Смешанная модель

При выборе необходимой модели временного ряда смотрят на амплитуду колебаний сезонной составляющей. Если ее колебания относительно постоянны, то выбирают аддитивную модель. То есть, амплитуда колебаний примерно одинакова:

Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение этих моделей сводится к расчету тренда (Tt), сезонности (St) и случайных возмущений (Et) для каждого уровня ряда (Yt).

Алгоритм построения модели

  1. Выравниваем ряд с помощью скользящей средней, то есть сглаживаем ряд и отфильтровываем высокочастотные колебания.
  2. Рассчитываем значение сезонной компоненты St.
  3. Рассчитываем значения Tt с использованием полученного уравнения тренда.
  4. Используя полученные значения St и Tt, находим прогнозные значения уровней временного ряда.
  5. Оцениваем качество модели.

Реализация на практике

Итак, мы имеем на руках данные о продажах за 2016 и 2017 год и хотим спрогнозировать продажи на 2018 год.

Шаг 1

Следуя нашему алгоритму, мы должны сгладить временной ряд. Воспользуемся методом скользящей средней. Видим, что в каждом году есть большие пики (май-июнь 2016 и апрель 2017), поэтому возьмем период сглаживания пошире, например, месячную динамику, т.е. 12 месяцев.

Удобнее брать период сглаживания в виде нечетного числа, тогда формула для расчета уровней сглаженного ряда:

yi — фактическое значение i-го уровня ряда,

yt — значение скользящей средней в момент времени t,

2p+1 — длина интервала сглаживания.

Но так как мы решили использовать месячную динамику в виде четного числа 12, то данная формула нам не подойдет и мы воспользуемся этой:

Иными словами, мы учитываем половины от крайних уровней ряда в диапазоне, в остальном формула не претерпела больше никаких изменений. Вот ее точный вид для нашей задачи:

Сглаживаем наши уровни ряда и растягиваем формулу вниз:

Сразу можем построить график из известных значений уровня продаж и их сглаженной. Выведем ее уравнение и значение коэффициента детерминации R^2:

В качестве сглаженной я выбрала полином третьей степени, так как он лучше всего описывал уровни временного ряда и имел наибольший R^2.

Шаг 2

Так как мы рассматриваем аддитивную модель вида:

Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и значениями скользящей средней St+Et = Yt-Tt, так как Yt и Tt мы уже знаем.

Используем оценки сезонной компоненты (St+Et) для расчета значений сезонной компоненты St. Для этого найдем средние за каждый интервал (по всем годам) оценки сезонной компоненты St.

Средняя оценка сезонной компоненты находится как сумма по столбцу, деленная на количество заполненных строк в этом столбце. В нашем случае оценки сезонной составляющей расположились в строках без пересечений, поэтому сумма по столбцам состоит из одиночных значений, следовательно и среднее будет таким же. Если бы мы располагали периодом побольше, например с 2015, у нас бы добавилась еще одна строка и мы смогли бы полноценно найти среднее, поделив сумму на 2.

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем интервалам должна быть равна нулю. Поэтому найдя значение случайной составляющей, поделив сумму средних оценок сезонной составляющей на 12, мы вычитаем ее значение из каждой средней оценки и получаем скорректированную сезонную компоненту, St.

Далее, заполняем нашу таблицу значениями сезонной составляющей дублируя ряд каждые 12 месяцев, то есть три раза:

Шаг 3

Теперь рассчитываем значения уровня тренда T(t) по тому уравнению, которое мы получили при построении сглаженного тренда на первом шаге.

T(t) = — 23294 + 34114 * t — 1593 *t^2 + 26,3 *t^3

Вместо t используем значения из столбца Период из соответствующей строки.

Шаг 4

Имея рассчитанные значения S(t) и T(t) мы можем рассчитать прогнозные значения уровней ряда Y(t). Для этого накладываем уровни сезонности на тренд.

Теперь построим график известных значений Y(t) и спрогнозированных за 2018 год.

Вот мы и нашли спрогнозированные значения уровней продаж на 2018 год. Значения отражают возрастающую тенденцию и сезонные пики. Конечно, эти данные не дают 100% точности, ведь существует множество внешних воздействий, которые могут изменить направление тренда, поэтому к прогнозным значениям обычно строят доверительный интервал, это такой коридор, внутри которого могут колебаться прогнозные значения с заданной вероятностью (чаще всего выбирают 95%). Но об этом я расскажу в следующей статье.

Шаг 5

Осталось оценить точность модели. Для этого будем использовать среднюю ошибку аппроксимации, которая поможет рассчитать ошибку в относительном выражении. Иными словами, это среднее отклонение расчетных значений от фактических, которое вычисляется по формуле:

yi — спрогнозированные уровни ряда,

yi* — фактические уровни ряда,

n — количество складываемых элементов.

Модель может считаться адекватной, если:

Итак, рассчитываем ошибку аппроксимации для нашего случая. Так как в основе нашего тренда лежит полином третьей степени, прогнозные значения начинают хорошо повторять фактические значения к концу 2016 года, думаю, я думаю, поэтому корректнее было бы рассчитать ошибку аппроксимации для значений 2017 года.

Сложив весь столбец с ошибками аппроксимации и поделив на 12, получаем среднюю ошибку аппроксимации 4,13%. Это значение меньше 15% и можем сделать вывод об адекватности модели.

Не забывайте, что прогнозы не бывают точными на 100%. Любые неожиданные внешние воздействия могут развернуть значения уровней ряда в неизвестном направлении

Ссылка на основную публикацию
Adblock
detector