Progress-servis55.ru

Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предельная ошибка выборочной средней формула

Выборочное наблюдение: понятие, виды, ошибки выборки, оценка результатов. Примеры решения задач

Как известно, в статистике существует два способа наблюдения массовых явлений в зависимости от полноты охвата объекта: сплошное и несплошное. Разновидностью несплошного наблюдения является выборочное наблюдение.

Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным образом.

Выборочное наблюдение ставит перед собой задачу – по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

Совокупность отобранных для обследования единиц в статистике принято называть выборочной совокупностью, а совокупность единиц, из которых производится отбор, называют генеральной совокупностью. Основные характеристики генеральной и выборочной совокупности представлены в таблице 1.

Таблица 1 — Основные характеристики генеральной и выборочной совокупности

ПоказательОбозначение или формула
Генеральная совокупностьВыборочная совокупность
Число единицNn
Число единиц, обладающих каким-либо признакомMm
Доля единиц, обладающих этим признакомp = M/Nω = m/n
Доля единиц, не обладающих этим признакомq = 1 — p1 — ω
Средняя величина признака
Дисперсия признака
Дисперсия альтернативного признака (дисперсия доли)pqω (1 — ω )

При проведении выборочного наблюдения возникают систематические и случайные ошибки. Систематические ошибки возникают в силу нарушения правил отбора единиц в выборку. Изменив правила отбора, от таких ошибок можно избавиться.

Случайные ошибки возникают в силу несплошного характера обследования. Иначе их называют ошибками репрезентативности (представительности). Случайные ошибки разделяют на средние и предельные ошибки выборки, которые определяются как при расчете признака, так и при расчете доли.

Средние и предельные ошибки связаны следующим соотношением: Δ = tμ, где Δ — предельная ошибка выборки, μ — средняя ошибка выборки, t — коэффициент доверия, определяемый в зависимости от уровня вероятности. В таблице 2 приведены некоторые значения t, взятые из теории вероятностей.

Таблица 2 — Соответствие некоторых значений вероятностей коэффициенту доверия

Вероятность, Р0,6830,8660,9540,9880,9970,999
Значение t1,01,52,02,53,03,5

Величина средней ошибки выборки рассчитывается дифференцированно в зависимости от способа отбора и процедуры выборки. Основные формулы для расчета ошибок выборки представлены в таблице 3.

Таблица 3 — Основные формулы для расчета ошибок выборки при повторном и бесповторном отборе

ПоказательОбозначение и формула
Генеральная совокупностьВыборочная совокупность
Средняя ошибка признака при случайном повторном отборе
Средняя ошибка доли при случайном повторном отборе
Предельная ошибка признака при случайном повторном отборе
Предельная ошибка доли при случайном повторном отборе
Средняя ошибка признака при случайном бесповторном отборе
Средняя ошибка доли при случайном бесповторном отборе
Предельная ошибка признака при случайном бесповторном отборе
Предельная ошибка доли при случайном бесповторном отборе

Расчет средней и предельной ошибок выборки позволяет определить возможные пределы, в которых будут находиться характеристики генеральной совокупности.

Например, для выборочной средней такие пределы устанавливаются на основе следующих соотношений:

— пределы доли признака в генеральной совокупности р.

Примеры решения задач по теме «Выборочное наблюдение в статистике»

Задача 1. Имеется информация о выпуске продукции (работ, услуг), полученной на основе 10% выборочного наблюдения по предприятиям области:

Определить: 1) по предприятиям, включенным в выборку: а) средний размер произведенной продукции на одно предприятие; б) дисперсию объема производства; в) долю предприятий с объемом производства продукции более 400 тыс. руб.; 2) в целом по области с вероятностью 0,954 пределы, в которых можно ожидать: а) средний объем производства продукции на одно предприятие; б) долю предприятий с объемом производства продукции более 400 тыс. руб.; 3) общий объем выпуска продукции по области.

Решение

Для решения задачи расширим предложенную таблицу.

1) По предприятиям, включенным в выборку, средний размер произведенной продукции на одно предприятие

= 110800/400 = 277 тыс. руб.

Дисперсию объема производства вычислим упрощенным способом σ 2 = 35640000/400 – 277 2 = 89100 — 76229 = 12371.

Число предприятий, объем производства продукции которых превышает 400 тыс. руб. равно 36+12 = 48, а их доля равна ω = 48:400 = 0,12 = 12%.

2) Из теории вероятности известно, что при вероятности Р=0,954 коэффициент доверия t=2. Предельная ошибка выборки

= 2√12371:400 = 11,12 тыс. руб.

Установим границы генеральной средней: 277-11,12 ≤Хср≤ 277+11,12; 265,88 ≤Хср≤ 288,12

Предельная ошибка выборки доли предприятий

Определим границы генеральной доли: 0,12-0,03≤ р ≤0,12+0,03; 0,09≤ р ≤0,15

3) Поскольку рассматриваемая группа предприятий составляет 10% от общего числа предприятий области, то в целом по области насчитывается 4000 предприятий. Тогда общий объем выпуска продукции по области лежит в пределах 265,88×4000≤Q≤288,12×4000; 1063520 ≤ Q ≤ 1152480

Задача 2. По результатам контрольной проверки налоговыми службами 400 бизнес-структур, у 140 из них в налоговых декларациях не полностью указаны доходы, подлежащие налогообложению. Определите в генеральной совокупности (по всему району) долю бизнес-структур, скрывших часть доходов от уплаты налогов, с вероятностью 0,954.

Решение

По условию задачи число единиц в выборочной совокупности n=400, число единиц, обладающих рассматриваемым признаком m=140, вероятность Р=0,954.

Из теории вероятностей известно, что при вероятности Р=0,954 коэффициент доверия t=2.

Долю единиц, обладающих указанным признаком, определим по формуле: p=w+∆p, где w = m/n=140/400=0,35=35%,
а предельную ошибку признака ∆p получим из формулы: ∆p= t √w(1-w)/n = 2√0,35×0,65/400 ≈ 0,5 = 5%

Ответ: Доля бизнес-структур, скрывших часть доходов от уплаты налогов с вероятностью 0,954 равна 35±5%.

Другие статьи по данной теме:

  • назад:Показатели вариации: понятие, виды, формулы для вычислений
  • далее:Ряды динамики: понятие и классификация. Показатели уровней ряда динамики. Примеры решения задач

Список использованных источников

  1. Белобородова С.С. и др. Теория статистики: Типовые задачи с контрольными заданиями. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2001;
  2. Минашкин В.Г. и др. Курс лекций по теории статистики. / Московский международный институт эконометрики, информатики, финансов и права. — М., 2003;
  3. Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005;
  4. Фёдорова Л.Н., Фёдорова А.Е. Методические указания по написанию контрольной работы по курсу «Статистика» для студентов экономических специальностей: УрГЭУ, 2007;

2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

Средние и предельные ошибки выборочного наблюдения

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки, которые свойственны только выборочным наблюдениям. Данные показа­тели отражают разность между выборочными и соответствую­щими генеральными показателями.

Средняя ошибкавыборки определяется прежде всего объе­мом выборки и зависит от структуры и степени варьирования изучаемого признака.

Смысл средней ошибки выборки заключается в следующем. Рассчитанные значения выборочной доли (w) и выборочной средней ( )по своей природе случайные величины. Они могут принимать различные значения в зависимости от того, какие кон­кретные единицы генеральной совокупности попадут в выборку. Например, если при определении среднего возраста работников предприятия в одну выборку включить больше молодежи, а в другую — работников старшего возраста, то выборочные средние и ошибки выборки будут разными. Средняя ошибка выборки определяется по формуле:

(27) или — повторная выборка. (28)

Где: μ – средняя ошибка выборки;

σ – среднее квадратическое отклонение признака в генеральной совокупности;

n – объем выборки.

Величина ошибки μ показывает, насколько среднее значение признака, установленное по выборке, отличается от истинного значения признака в генеральной совокупности.

Из формулы следует, что ошибка выборки прямо пропорциональна среднему квадратическому отклонению и обратно пропорциональна корню квадратному из числа единиц, попавших в выборку. Это означает, например, что чем больше разброс значений признака в генеральной совокупности, то есть чем больше дисперсия, тем больше должен быть объем выборки, если мы хотим доверять результатам выборочного обследования. И, наоборот, при малой дисперсии можно ограничиться небольшим числом выборочной совокупности. Ошибка выборки при этом будет находиться в приемлемых пределах.

Поскольку при бесповторном отборе численность генеральной совокупности N в ходе выборки сокращается, то в формулу для расчета средней ошибки выборки включают дополнительный множитель

(1- ). Формула средней ошибки выборки принимает следующий вид:

. (29)

Средняя ошибка меньше у бесповторной выборки, что и обусловливает ее более широкое применение.

Для практических выводов нужна характеристика генеральной совокупности на основе выборочных результатов. Выборочные средние и доли распространяются на генеральную совокупность с учетом предела их возможной ошибки, причем с гарантирующим ее уровнем вероятности. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения и определяют предельную ошибку выборки.

Надежностью (доверительной вероятностью) оценки Х по Х* называют вероятность γ, с которой осуществляется неравенство

Обобщенные формулы по теме «Выборочное наблюдение»

Повторный отборБесповторный отбор
Средняя ошибка выборочной средней
Средняя ошибка выборочной доли
Предельная ошибка выборочной средней
Предельная ошибка выборочной доли

Пример 1: производится выборочная 5%-ная обработка данных об успеваемости студентов 5-го курса дневного отделения ВУЗа одного из факультетов по результатам зимней сессии:

Баллы успеваемостиВсего
Число студентов

Принимая во внимание, что отбор был случайным и бесповторным, определите с вероятностью 0,954 по факультету в целом:

1) пределы, в которых находится средний балл успеваемости в целом по факультету;

2) пределы, в которых находится доля студентов, сдавших экзамены на «хорошо» и «отлично».

Решение:

1) Среднее значение признака в генеральной совокупности находится в интервале: Х* — δ ≤ ≤ Х* + δ.

По формуле средней арифметической взвешенной найдем средний балл успеваемости. = 3,75 балла.

Предельную ошибку выборки определим по формуле для бесповторного отбора:

или δ = t * = 2 * = 0,122.

Соответственно, средний балл успеваемости в целом по факультету находится в пределах ±0,122 балла:

3,75 – 0,122 ≤ ≤ 3,75 + 0,122.

С вероятностью 0,954 можно утверждать, что средний балл успеваемости в целом по факультету составляет от 3,628 до 3, 872 балла.

2) доверительные интервалы или пределы доли студентов, сдавших экзамены на «хорошо» и «отлично», представляют собой:

По итогам выборки определяем долю студентов, сдавших экзамены на «хорошо» и «отлично»:

ω = 90 + 40 = 0,65 или 65 %.

Средняя ошибка доли:

= балла.

Предельная ошибка доли:

t*μ = 2 * 0,033 ≈ 0,066 или 6,6 %.

Таким образом, доля студентов, сдавших экзамены на «хорошо» и «отлично», в генеральной совокупности находится в пределах ω±6,6%:

65 % — 6,6 % ≤ р ≤ 65 % + 6,6 %.

С вероятностью 0,954 можно гарантировать, что доля студентов, сдавших экзамены на «хорошо» и «отлично», составляет от 58,4 до 71,6 % общего числа студентов факультета.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9274 — | 7852 — или читать все.

CFA — Центральная предельная теорема и распределение выборочного среднего

Центральная предельная теорема — одна из наиболее практически полезных теорем теории вероятностей в работе финансового аналитика. Рассмотрим эту концепцию в рамках изучения количественных методов по программе CFA.

Ранее мы рассматривали пример анализа, где аналитик оценивал средние планируемые капитальные затраты клиентов на телекоммуникационное оборудование.

Если предположить, что выборка репрезентативна для совокупности, то как аналитик может оценить ошибку выборки при расчете среднего значения по совокупности?

Рассматриваемое как формула, которая использует функцию случайных исходов случайной величины, выборочное среднее само по себе является случайной величиной с распределением вероятностей. Это распределение вероятностей называется выборочным распределением статистики (англ. ‘sampling distribution’).

Иногда возникает путаница, потому что термин «выборочное среднее» также используется в другом смысле. При расчете выборочного среднего для конкретной выборки, мы получаем определенное число, скажем, 8.

Если мы говорим, что «выборочное среднее равно 8», мы используем термин «выборочное среднее» в смысле конкретного исхода выборочного среднего как случайной величины. Число 8 является, конечно же, постоянной величиной и не имеет распределения вероятностей.

В данном обсуждении, мы не рассматриваем «выборочное среднее» как постоянную величину, относящуюся к конкретной выборке.

Для того, чтобы оценить, насколько близко выборочное среднее к среднему по совокупности, аналитик должен понимать распределение выборочного среднего. К счастью, у нас есть для этого инструмент, — центральная предельная теорема, которая помогает нам понять распределение выборочного среднего для многих задач оценивания, с которыми мы сталкиваемся.

Центральная предельная теорема.

Центральная предельная теорема — одна из наиболее практически полезных теорем теории вероятностей. Она имеет важное значение для того, как мы строим доверительные интервалы и проверяем статистические гипотезы.

Формально она формулируется следующим образом:

Центральная предельная теорема позволяет сделать довольно точные вероятностные утверждения о среднем значении совокупности на основе выборочного среднего, независимо от размера распределения совокупности (так как оно имеет конечную дисперсию), потому что выборочное среднее приблизительно соответствует нормальному распределению для выборок большого размера.

Тут сразу возникает очевидный вопрос:

«Какой размер выборки можно считать достаточно большим, чтобы мы могли считать, что выборочное среднее соответствует нормальному распределению?»

В целом, если размер выборки ( n ) больше или равен 30, то можно считать, что выборочное среднее приблизительно нормально распределено.

Центральная предельная теорема утверждает, что дисперсия распределения выборочного среднего равна ( sigma^2 / n ). Положительный квадратный корень из дисперсии является стандартным отклонением.

Стандартное отклонение выборочной статистики также называют стандартной ошибкой статистики (англ. ‘standard error’).

Стандартная ошибка выборочного среднего является важной величиной в применении центральной предельной теоремы на практике.

Определение стандартной ошибки среднего значения выборки.

Для среднего значения выборки ( overline X) рассчитанного на основе выборки из совокупности со стандартным отклонением ( sigma ), стандартная ошибка среднего значения выборки определяется одним из двух выражений:

когда мы знаем стандартное отклонение совокупности ( sigma ), или

когда нам не известно стандартное отклонение совокупности и необходимо использовать стандартное отклонение выборки (s), чтобы оценить его.

Необходимо отметить технический момент: Когда мы делаем выборку размера (n) из конечной совокупности размера (N), мы применяем уменьшающий коэффициент к стандартной ошибке выборочного среднего, который называется поправкой для конечной совокупности (или FPC, от англ. ‘finite population correction factor’).

Таким образом, если (N = 100) и (n = 20), то ( [(100 — 20)/(100 — 1)]^ <1/2>= 0.898933 ).

Если мы рассчитали стандартную ошибку равную, скажем, 20, в соответствии с Формулой 1 или Формулой 2, то оценка ошибки с поправкой составляет ( 20(0.898933) = 17.978663 ).

FPC применяется только когда мы делаем выборку из конечной совокупности без замены.

На практике, большинство аналитиков не применяют FPC, если размер выборки (n) слишком мал по сравнению с ( N ) (скажем, менее 5% от (N) ).

Для получения дополнительной информации о поправке для конечной совокупности см. Daniel and Terrell (1995).

На практике, нам почти всегда приходится использовать Формулу 2. Стандартное отклонение выборки (s) можно рассчитать, найдя квадратный корень из дисперсии выборки (s^2), которая рассчитывается следующим образом:

( Large < s^2 = ^ big ( X_i — overline big )^2 over n-1 > > ) (Формула 3)

Мы скоро увидим, как мы можем использовать среднее значение выборки и его стандартную ошибку, чтобы сделать вероятностные утверждения о среднем значении совокупности, используя технику доверительных интервалов.

Но сначала мы проиллюстрируем всю силу центральной предельной теоремы.

Пример (3) применения центральной предельной теоремы.

Примечательно, что выборочное среднее для выборок больших размеров будет распределяться нормально, независимо от распределения генеральной совокупности.

Чтобы проиллюстрировать центральную предельную теорему в действии, мы используем в этом примере явное ненормальное распределение и используем его для создания большого количества случайных выборок размером 100.

Затем мы рассчитываем выборочное среднее для каждой выборки. Частотное распределение рассчитываемых выборочных средних является приближением распределения выборочного среднего для данного размера выборки.

Выглядит ли выборочное распределение как нормальное распределение?

Вернемся к примеру с аналитиком, изучающим планы капитальных затрат клиентов на покупку телекоммуникационного оборудования.

Предположим, что капитальные затраты на оборудование образуют непрерывную равномерную случайную величину с нижним пределом равным $0, и верхним пределом, равным $100. Для краткости, обозначим эту равномерную случайную величину как (0, 100).

Функция вероятности этой непрерывной равномерной случайной величины имеет довольно простую форму, не соответствующую нормальному распределению. Это горизонтальная линия с пересечением на вертикальной оси в точке 1/100. В отличии от нормальной случайной величины, для которой близкие к среднему исходы были бы наиболее вероятны, для равномерной случайной величины все возможные исходы равновероятны.

Чтобы проиллюстрировать силу центральной предельной теоремы, мы проводим моделирование методом Монте-Карло для изучения планируемых капитальных расходов на телекоммуникационное оборудование.

Моделирование методом Монте-Карло предполагает использование компьютера, чтобы смоделировать работу рассматриваемой системы с учетом риска. Составной частью моделирования методом Монте-Карло является генерация большого числа случайных выборок из заданного распределения вероятностей или распределений.

В этом моделировании мы делаем 200 случайных выборок капитальных затрат 100 компаний (200 сгенерированных случайных исходов, каждый из которых состоит из капитальных затрат 100 компаний при (n = 100 )).

В каждом испытании моделирования, 100 значений капитальных затрат генерируются из равномерного распределения (0, 100). Для каждой случайной выборки, мы вычисляем выборочное среднее. Всего мы проводим 200 имитационных испытаний.

Поскольку мы определили распределение, генерирующее выборки, мы знаем, что средние капитальные затраты генеральной совокупности равны ($0 + $100 млн.)/2 = $50 млн.; дисперсия капитальных затрат совокупности равна ( (100 — 0)^2/12 = 833.33 ).

Таким образом, стандартное отклонение составляет $28.87 млн. ​​и стандартная ошибка равна ( 28.87 Big / sqrt <100>= 2.887 ) в соответствии с центральной предельной теоремой.

Если ( a ) является нижним пределом равномерной случайной величины и ( b ) является верхним пределом, то среднее значение случайной величины определяется по формуле ( (a + b)/2 ), а ее дисперсия определяется по формуле ( (b — a)^2/12 ).

Результаты этого моделирования методом Монте-Карло приведены в Таблице 2 в виде частотного распределения. Это распределение является рассчитанным выборочным распределением среднего значения.

Таблица 2. Частотное распространение:
200 случайных выборок
равномерной случайной величины (0,100).

Диапазон выборки
средних значений ($ млн.)

42.5 (leq overline X

Итак, в соответствии с центральной предельной теоремой, когда мы делаем выборку из любого распределения, распределение выборочного среднего будет иметь следующие свойства, если размер нашей выборки достаточно велик:

  • Распределение выборочного среднего ( overline X) будет приблизительно соответствовать нормальному распределению.
  • Среднее значение распределения ( overline X) будет равно среднему значению генеральной совокупности, из которой сделана выборка.
  • Дисперсия распределения ( overline X) будет равна дисперсии совокупности, деленной на размер выборки.

Далее мы обсудим концепции и инструменты, связанные с оценкой параметров совокупности, с особым акцентом на среднее значение совокупности.

Мы фокусируем внимание на среднем значении совокупности, потому что интервальные оценки среднего значения совокупности интересуют финансовых аналитиков, как правило, больше, чем любой другой тип интервальных оценок.

Читать еще:  File not found exception java
Ссылка на основную публикацию
Adblock
detector