Progress-servis55.ru

Новости из мира ПК
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Matlab двумерный массив

Matlab двумерный массив

Наборы чисел в программировании принято называть массивами. Всему массиву присваивается одно имя, а доступ к отдельным элементам массива осуществляется по целочисленному индексу, то есть номеру элемента в массиве. Массивы бывают одномерными, когда используется единственный индекс (номер), а могут быть и многомерными (в частности — двумерными).

Сначала рассмотрим одномерные массивы. Это линейные наборы чисел (элементов), в которых позиция каждого элемента задаётся единственным числом — его номером. Можно говорить о первом элементе массива, о втором и т.д.

Для задания одномерного массива, состоящего из нескольких чисел (вещественных или комплексных), используется операция конкатенации, обозначаемая с помощью квадратных скобок — [] . Например, следующее выражение

формирует переменную с именем a1 , являющуюся одномерным массивом из трёх элементов (вещественных чисел). Объединяемые в массив элементы должны отделяться друг от друга либо пробелом, либо запятой. Так что выражение

абсолютно идентично предыдущему.

Для доступа к индивидуальному элементу одномерного массива нужно после его имени указать в круглых скобках индекс (номер) этого элемента. Например, третий элемент массива a1 обозначается как a1(3) , первый элемент — как a1(1) , второй элемент — как a1(2) .

Если требуется изменить третий элемент уже сформированного выше операцией конкатенации массива a1 , то можно применить операцию присваивания:

Пусть, к примеру, второй элемент массива a1 должен стать равным среднему арифметическому первого и третьего элементов. Для этого выполняем следующее действие:

Количество элементов в одномерном массиве всегда можно узнать с помощью функции length :

При попытке чтения несуществующего элемента (напрмер, четвёртого элемента массива a1 ) в командном окне MATLABа появляется сообщение об ошибке:

В этом сообщении утверждается, что индекс превысил размер массива.

В то же время запись несуществующего элемента вполне допустима — она означает добавление нового элемента к уже существующему массиву:

Применяя к массиву a1 функцию length , находим, что количество элементов в этом массиве возросло до четырёх:

То же самое действие — «удлинение массива a1 » ,можно выполнить и с помощью операции конкатенации:

Здесь операндами операции конкатенации являются массив a1 , состоящий из трёх элементов, и добавляемый к нему четвёртый элемент, равный 7 .

Теперь создадим ещё один одномерный массив a2 , причём для его создания не будем использовать операцию конкатенации (как мы поступили выше). Вместо этого будем прописывать каждый элемент создаваемого массива по-отдельности:

a2(1) = 67
a2(2) = 7.8
a2(3) = 0.017

Из двух существующих массивов — массива a1 с четырьмя элементами и массива a2 с тремя элементами, можно одной (групповой) операцией конкатенации создать одномерный массив b из семи элементов:

Массивы могут состоять не только из вещественных чисел. Выражение

d = [ 1+2i, 2+3i, 3-7i ]

формирует одномерный массив d комплексных чисел. Разделителем элементов формируемого одномерного массива может быть либо пробел, либо запятая. При использовании выражений и комплексных чисел использование запятой предпочтительнее.

Теперь рассмотрим двумерные массивы, которые можно трактовать как набор чисел, упорядоченный в виде прямоугольной таблицы, когда для доступа к индивидуальному элементу используется два индекса — номер строки и номер столбца (на пересечении которых и стоит выбранный элемент).

Двумерный массив характеризуется количеством строк и количеством столбцов. Составим массив a3 , состоящий из двух столбцов и трёх строк:

Из этого рисунка хорошо видно, что в качестве разделителя строк в формируемом с помощью операции конкатенации двумерном массиве служит точка с запятой.

Как и в случае одномерных массивов двумерный массив можно создать, индивидуально прописывая его элементы:

a3(1,1) = 1
a3(1,2) = 2
a3(2,1) = 3
a3(2,2) = 4
a3(3,1) = 5
a3(3,2) = 6

Для доступа к отдельным элементам двумерного массива используется выражение с круглыми скобками, в которых через запятую перечисляются его индексы. Первым указывается номер строки, вторым — номер столбца.

Система MATLAB может работать и с массивами больших размерностей. Они будут рассматриваться позже в следующем разделе.

Вернёмся к двумерным массивам, которые в математике принято называть матрицами. Любая строка матрицы является одномерным массивом, и любой столбец матрицы также является одномерным массивом. Однако есть некоторая разница в упорядочении их элементов с точки зрения матриц: элементы первого одномерного массива упорядочены вдоль строк матрицы (горизонтально), а элементы второго — вдоль столбцов (вертикально). Если явно учитывать в понятии одномерного массива эту разницу, то тогда массивы первого типа называют вектор-строками, а второго типа — вектор-столбцами. В этом случае также можно считать, что вектор-строки являются частным случаем матрицы с количеством строк, равным единице, а вектор-столбцы являются частным случаем матрицы с количеством столбцов, равным единице.

В системе MATLAB все одномерные массивы трактуются либо как вектор-строки, либо как вектор-столбцы. До сих пор мы вводили только вектор-строки. Следующее выражение, использующее операцию конкатенации, задаёт вектор-столбец

состоящий из трёх строк, так как точка с запятой в операции конкатенации означает переход на новую строку.

Для массива a4 функция length(a4) возвращает число 3 , так как действительно этот массив состоит из трёх элементов. Функция length не различает вектор-строки и вектор-столбцы.

Если попросить систему MATLAB показать значение переменной a4 , то мы увидим следующую картину:

То есть MATLAB распознаёт «геометрию» этого одномерного массива и наглядно отображает его, располагая элементы для показа в своём окне вертикально.

Чтобы отразить правильно геометрию вектор-столбцов и вектор-строк, а также узнать размеры двумерного массива в обоих направлениях, используют функцию size . Для двумерного массива a3 получается следующий результат:

причём первым показывается число строк, а вторым — число столбцов.

Применяем эту же функцию к одномерным массивам. Вот, что из этого получается для вектор-строки a2

состоящего из одной строки и трёх столбцов. Для вектор-столбца a4 , состоящего из трёх строк и одного столбца, имеем следующий результат применения функции size :

Наконец, попробуем применить эту функцию к переменной, состоящей из единственного числового значения, то есть к скаляру:

var1 = 5
size(var1)
ans =
1 1

Отсюда видно, что система MATLAB трактует даже по-существу скалярные величины как массивы с размером 1×1. Это ровным счётом ничего не меняет для пользователя, так как он может не обращать на это никакого внимания. MATLAB переходит от скаляров к массивам прозрачно, не требуя от пользователя дополнительных действий.

Итак, всё, с чем работает MATLAB, является массивами различной размерности. Все массивы из текущего сеанса работы (текущего Рабочего пространства) можно просмотреть

с точки зрения их структуры с помощью команды whos .

Урок 5 — Работа с массивами в Матлаб(Matlab)

Все данные MatLab представляет в виде массивов. Очень важно правильно понять, как использовать массивы. Без этого невозможна эффективная работа в MatLab, в частности построение графиков, решение задач линейной алгебры, обработки данных, статистики и многих других. В данном подразделе описаны вычисления с векторами.

Массив — упорядоченная, пронумерованная совокупность однородных данных. У массива должно быть имя. Массивы различаются по числу размерностей или измерений: одномерные, двумерные, многомерные. Доступ к элементам осуществляется при помощи индекса. В MatLab нумерация элементов массивов начинается с единицы. Это значит, что индексы должны быть больше или равны единице.

Важно понять, что вектор, вектор-строка или матрица являются математическими объектами, а одномерные, двумерные или многомерные массивы — способы хранения этих объектов в компьютере. Всюду дальше будут использоваться слова вектор и матрица, если больший интерес представляет сам объект, чем способ его хранения. Вектор может быть записан в столбик (вектор-столбец) и в строку (вектор-строка). Вектор-столбцы и вектор-строки часто будут называться просто векторами, различие будет сделано в тех случаях, если важен способ хранения вектора в MatLab. Векторы и матрицы обозначаются курсивом, а соответствующие им массивы прямым моноширинным шрифтом, например: «вектор а содержится в массиве а», «запишите матрицу R в массив r».

Читать еще:  Ошибка получения данных сервера гугл плей

Ввод сложение и вычитание векторов

Работу с массивами начнем с простого примера — вычисления суммы векторов:
, .

Для хранения векторов используйте массивы а и b. Введите массив а в командной строке, используя квадратные скобки и разделяя элементы вектора точкой с запятой:

» a = [1.3; 5.4; 6.9]
a =
1.3000
5.4000
6.9000

Так как введенное выражение не завершено точкой с запятой, то пакет MatLab автоматически вывел значение переменной а. Введите теперь второй вектор, подавив вывод на экран

Для нахождения суммы векторов используется знак +. Вычислите сумму, запишите результат в массив с и выведите его элементы в командное окно:

» с = а + b
с =
8.4000
8.9000
15.1000

Узнайте размерность и размер массива а при помощи встроенных функций ndims и size:

Итак, вектор а хранится в двумерном массиве а размерностью три на один (вектор-столбец из трех строк и одного столбца). Аналогичные операции можно проделать и для массивов b и c. Поскольку числа в пакете MatLab представляются в виде двумерного массива один на один, то при сложении векторов используется тот же знак плюс, что и для сложения чисел.

Ввод вектор-строки осуществляется в квадратных скобках, однако элементы следует разделять пробелами или запятыми. Операции сложения, вычитания и вычисление элементарных функций от вектор-строк производятся так же, как и с вектор-столбцами, в результате получается вектор-строка того же размера, что и исходные. Например:

» s1 = [3 4 9 2]
s1 =
3 4 9 2
» s2 = [5 3 3 2]
s1 =
5 3 3 2
» s3 = s1 + s2
s3 =
8 7 12 4

Замечание 1

Если размеры векторов, к которым применяется сложение или вычитание, не совпадают, то выдается сообщение об ошибке.

Естественно, для нахождения разности векторов следует применять знак минус, с умножением дело обстоит несколько сложнее.
Введите две вектор-строки:

» v1 = [2 -3 4 1];
» v2 = [7 5 -6 9];

Операция .* (не вставляйте пробел между точкой и звездочкой!) приводит к поэлементному умножению векторов одинаковой длины. В результате получается вектор с элементами, равными произведению соответствующих элементов исходных векторов:

» u = v1.*v2
u =
14 -15 -24 9

При помощи .^ осуществляется поэлементное возведение в степень:

» р = v1.^2
p =
4 9 16 1

Показателем степени может быть вектор той же длины, что и возводимый в степень. При этом каждый элемент первого вектора возводится в степень, равную соответствующему элементу второго вектора:

» p = vl.^v2
Р =
128.0000 -243.0000 0.0002 1.0000

Деление соответствующих элементов векторов одинаковой длины выполняется с использованием операции ./

» d = v1./v2
d =
0.2857 -0.6000 -0.6667 0.1111

Обратное поэлементное деление (деление элементов второго вектора на соответствующие элементы первого) осуществляется при помощи операции .

» dinv = vl.v2
dinv =
3.5000 -1.6667 -1.5000 9.0000

Итак, точка в MatLab используется не только для ввода десятичных дробей, но и для указания того, что деление или умножение массивов одинакового размера должно быть выполнено поэлементно.
К поэлементным относятся и операции с вектором и числом. Сложение вектора и числа не приводит к сообщению об ошибке. MatLab прибавляет число к каждому элементу вектора. То же самое справедливо и для вычитания:

» v = [4 6 8 10];
» s = v + 1.2
s =
5.2000 6.2000 9.2000 11.2000
» r = 1.2 — v
r =
-2.8000 -4.8000 -6.8000 -8.8000
» r1 = v — 1.2
r1 = 2.8000 4.8000 6.8000 8.8000

Умножать вектор на число можно как справа, так и слева:

» v = [4 6 8 10];
» p = v*2
р =.
8 12 16 20
» pi = 2*v
pi =
8 12 16 20

Делить при помощи знака / можно вектор на число:

» р = v/2
p =
2 3 4 5

Попытка деления числа на вектор приводит к сообщению об ошибке:

» р = 2/v
. Error using ==> /
Matrix dimensions must agree.

Если требуется разделить число на каждый элемент вектора и записать результат в новый вектор, то следует использовать операцию ./

» w = [4 2 6];
» d = 12./w
d =
3 6 2

Все вышеописанные операции применимы как к вектор-строкам, так и к вектор-столбцам.
Особенность MatLab представлять все данные в виде массивов является очень удобной. Пусть, например, требуется вычислить значение функции sin сразу для всех элементов вектора с (который хранится в массиве с) и записать результат в вектор d. Для получения вектора d достаточно использовать один оператор присваивания:

» d = sin(с)
d =
0.8546
0.5010
0.5712

Итак, встроенные в MatLab элементарные функции приспосабливаются к виду аргументов; если аргумент является массивом, то результат функции будет массивом того же размера, но с элементами, равными значению функции от соответствующих элементов исходного массива. Убедитесь в этом еще на одном примере. Если необходимо найти квадратный корень из элементов вектора dсо знаком минус, то достаточно записать:

» sqrt(-d)
ans =
0 + 0.9244i
0 + 0.7078i
0 + 0.7558i

Оператор присваивания не использовался, поэтому пакет MatLab записал ответ в стандартную переменную ans.

Для определения длины вектор-столбцов или вектор-строк служит встроенная функция length:

Из нескольких вектор-столбцов можно составить один, используя квадратные скобки и разделяя исходные вектор-столбцы точкой с запятой:

Для сцепления вектор-строк также применяются квадратные скобки, но сцепляемые вектор-строки отделяются пробелами или запятыми:

» v1 = [1 2];
» v2 = [3 4 5];
» v = [v1 v2]
v =
1 2 3 4 5

Работа с элементами векторов

Доступ к элементам вектор-столбца или вектор-строки осуществляется при помощи индекса, заключаемого в круглые скобки после имени массива, в котором хранится вектор. Если среди переменных рабочей среды есть массив v, определенный вектор-строкой

» v = [1.3 3.6 7.4 8.2 0.9];

то для вывода, например его четвертого элемента, используется индексация:

Появление элемента массива в левой части оператора присваивания приводит к изменению в массиве

» v(2) = 555
v =
1.3000 555.0000 7.4000 8.2000 0.9000

Из элементов массива можно формировать новые массивы, например

» u = [v(3); v(2); v(1)]
u =
7.4000
555.0000
1.3000

Для помещения определенных элементов вектора в другой вектор в заданном порядке служит индексация при помощи вектора. Запись в массив w четвертого, второго и пятого элементов v производится следующим образом:

» ind = [4 2 5];
» w = v(ind)
w =
8.2000 555.0000 0.9000

MatLab предоставляет удобный способ обращения к блокам последовательно расположенных элементов вектор-столбца или вектор-строки. Для этого служит индексация при помощи знака двоеточия. Предположим, что в массиве w, соответствующем вектор-строке из семи элементов, требуется заменить нулями элементы со второго по шестой. Индексация при помощи двоеточия позволяет просто и наглядно решить поставленную задачу:

» w = [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» w(2:6) = 0;
» w
w =
0.1000 0 0 0 0 0 9.8000

Присваивание w(2:6) = 0 эквивалентно последовательности команд
w(2) = 0; w(3)=0; w(4)=0; w(5)=0; w(6)=0.
Индексация при помощи двоеточия оказывается удобной при выделении части из большого объема данных в новый массив:

» w — [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» wl = w(3:5)
wl =
3.3000 5.1000 2.6000

Составьте массив w2, содержащий элементы w кроме четвертого. В этом случае удобно использовать двоеточие и сцепление строк:

» w2 = [w(l:3) w(5:7)]
w2 =
0.1000 2.9000 3.3000 2.6000 7.1000 9.8000

Элементы массива могут входить в выражения. Нахождение, например среднего геометрического из элементов массива u, можно выполнить следующим образом:

Конечно, этот способ не очень удобен для длинных массивов. Для того чтобы найти среднее геометрическое, необходимо набрать в формуле все элементы массива. В MatLab существует достаточно много специальных функций, облегчающих подобные вычисления.

Применение функций обработки данных к векторам

Перемножение элементов вектора-столбца или вектора-строки осуществляется при помощи функции prod:

» z = [3; 2; 1; 4; 6; 5];
» р = prod(z)
p = 720

Функция sum предназначена для суммирования элементов вектора. С ее помощью нетрудно вычислить среднее арифметическое элементов вектора z:

» sum(z)/length(z)
ans =
3.5000

Читать еще:  Стандартные ошибки параметров

В MatLab имеется и специальная функция mean для вычисления среднего арифметического:

Для определения минимального и максимального из элементов вектора служат встроенные функции min и max:

» m1 = max(z)
m1 =
6
» m2 = min(z)
m2 =
1

Часто необходимо знать не только значение минимального или максимального элемента в массиве, но и его индекс (порядковый номер). В этом случае встроенные функции min и max необходимо использовать с двумя выходными аргументами, например

» [m, k] = min(z)
m =
1
k =
3

В результате переменной m будет присвоено значение минимального элемента массива z, а номер минимального элемента занесен в переменную k.
Для получения информации о различных способах использования функций следует набрать в командной строке help и имя функции. MatLab выведет в командное окно всевозможные способы обращения к функции с дополнительными пояснениями.
В число основных функций для работы с векторами входит функция упорядочения вектора по возрастанию его элементов sort.

» r = [9.4 -2.3 -5.2 7.1 0.8 1.3];
» R = sort(r)
R =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000

Можно упорядочить вектор по убыванию, используя эту же функцию sort:

» R1 = -sort(-r)
R1 =
9.4000 7.1000 1.3000 0.8000 -2.3000 -5.2000

Упорядочение элементов в порядке возрастания их модулей производится с привлечением функции abs:

» R2 = sort(abs(r))
R2 =
0.8000 1.3000 2.3000 5.2000 7.1000 9.4000

Вызов sort с двумя выходными аргументами приводит к образованию массива индексов соответствия элементов упорядоченного и исходного массивов:

» [rs, ind] = sort(r)
rs =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000
ind =
3 2 5 6 4 1

Matlab двумерный массив

Название работы: Работа с многомерными массивами пакета MatLab

Категория: Лабораторная работа

Предметная область: Информатика, кибернетика и программирование

Описание: Использование функций ones zeros rnd и rndn Функции ones создание массивов с единичными элементами zeros создание массивов с нулевыми элементами и rnd или rndn создание массивов с элементами случайными числами с соответственно равномерным и нормальным распределением могут также использоваться для создания многомерных массивов. Примеры приводятся ниже: E=ones332 E::1 = 1 1 1 1 1 1 1 1 1 E::2 = 1 1 1 1 1.

Дата добавления: 2014-02-05

Размер файла: 39.12 KB

Работу скачали: 7 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

Тульский государственный университет

Применение ЭВМ в электроэнергетических расчетах

Лабораторная работа №7

Работа с многомерными массивами пакета MatLab .

Форма обучения (очная)

Знакомство с возможностями системы MATLAB : освоение навыков работы с многомерными мас c ивами в пакете MATLAB .

  1. Теоретические сведения, необходимые для выполнения лабораторной работы
  2. Применение оператора «:» в многомерных массивах .

При обычном задании массивов (с помощью символа точки с запятой «;») число рядов (строк) массива получается на 1 больше, чем число символов «;», но массив остается двумерным. Оператор «:» (двоеточие) позволяет легко выполнять операции по увеличению размерности массивов. Приведем пример формирования трехмерного массива путем добавления новой страницы. Пусть задан исходный двумерный массив М размером

>> M=[1 2 3;4 5 6;7 8 9]

Для добавления новой страницы с тем же размером можно расширить М следующим образом:

>> M(. 2)=[10 11 12;13 14 15;16 17 18]

Посмотрим, что теперь содержит массив М при явном его указании:

Как можно заметить, числа в выражениях М(: , : , 1) и М(: , : , 2) означают номер страницы.

  1. Использование функций ones , zeros , rand и randn

Функции ones (создание массивов с единичными элементами), zeros (создание массивов с нулевыми элементами) и rand или randn (создание массивов с элементами – случайными числами с соответственно равномерным и нормальным распределением) могут также использоваться для создания многомерных массивов. Примеры приводятся ниже:

Эти примеры достаточно очевидны и не требуют особых комментариев. Обратите, однако внимание на легкость задания размеров массивов для каждой размерности. Кроме того, следует отметить, что если хотя бы одна размерность массива равна нулю, то массив будет пустым:

Empty array: 3-by-3-by-3-by-0

Как видно из данного примера, пустой массив возвращается с соответствующим комментарием.

Для создания многомерных массивов служит описанная ранее для матриц специальная функция конкатенации cat :

  1. с at ( DIM , A , B ) – возвращает результат объединения двух массивов А и В вдоль размерности DIM ;
  2. с at (2, A , B ) – возвращает массив [ A , B ], в котором объединены ряды (горизонтальная конкатенация);
  3. с at (1, A , B ) – возвращает массив [ A , B ], в котором объединены столбцы (вертикальная конкатенация);
  4. В=с at ( DIM , A 1, A 2,…) – объединяет множество входных массивов А1, А2,… вдоль размерности DIM ;

Функции с at ( DIM , C <:>) и с at ( DIM , C . FIELD ) обеспечивает соответственно конкатенацию (объединение) ячеек массива ячеек или структур массива структур, содержащих числовые матрицы, в единую матрицу. Ниже приводятся примеры применения функции cat :

РАБОТА С МАССИВАМИ В СЕДЕ MATLAB

    Юлия Денисьева 3 лет назад Просмотров:

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р. Е. АЛЕКСЕЕВА» КАФЕДРА «КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В ПРОЕКТИРОВАНИИ И ПРОИЗВОДСТВЕ» РАБОТА С МАССИВАМИ В СЕДЕ MATLAB ЛАБОРАТОРНАЯ РАБОТА по дисциплине «Математический аппарат динамических систем» для магистрантов очной формы обучения по направлениям подготовки. «Конструирование и технология радиоэлектронных средств». «Инфокоммуникационные технологии и системы связи». «Радиотехника» (профиль подготовки «Техника СВЧ и антенны»), по дисциплине «Модели динамических систем для магистрантов очной формы обучения по направлению подготовки 9.. «Информационные системы и технологии» Нижний Новгород

3 Составитель Кукушкин А.В. УДК 68 Работа с массивами в среде MATLAB: лаб. работа по дисциплине «Математический аппарат динамических систем» для магистрантов очной формы обучения по направлениям подготовки. «Конструирование и технология радиоэлектронных средств». «Инфокоммуникационные технологии и системы связи». «Радиотехника» (профиль подготовки «Техника СВЧ и антенны»), по дисциплине «Модели динамических систем для магистрантов очной формы обучения по направлению подготовки 9.. «Информационные системы и технологии», Нижегородский Государственный технический университет им. Р. Е. Алексеева, 7 с. Нижегородский государственный технический университет им. Р.Е. Алексеева, Кукушкин А. В.,

5 . Цель работы Целью работы является приобретение навыков работы с массивами в программной среде MatLab, т.к. все данные в MatLab представляются и хранятся в виде массивов. В работе изучаются операции и вычисления с векторами (одномерные массивы) и матрицами (двумерные массивы).. Краткие сведения из теории Массив с присвоенным ему именем упорядоченная, пронумерованная совокупность однородных данных [, ]. Массивы различаются по числу измерений: одномерные, двумерные и многомерные. Размером массива называют число элементов по каждому измерению. Доступ к элементам осуществляется с помощью индекса (нумерация элементов начинается с индекса, равного единице). Если вектор (векторстрока или вектор-столбец), матица или тензор являются математическими понятиями (объектами), то одномерные, двумерные и многомерные массивы это способы хранения или представления этих объектов в компьютере.. Задания к работе и порядок ее выполнения Работа выполняется в командной строке (в консоли) пакета MatLab по инструкциям, приведенным в описании. Контрольные задания следуют по тексту описания.. Одномерные массивы. Умножение векторов Векторы можно перемножать между собой скалярно, векторно или образовывать так называемое «внешнее произведение». В первом случае образуется скаляр (число), во втором вектор и в третьем матрица. Скалярное произведение двух векторов, хранящихся в массивах a, b с длиной N, определяется формулой N a b a b k k. Поэтому используется поэлементное перемножение массивов, т. е. если

6 a. 7 b то в командной строке нужно набрать: >> a=[.; -.;.7]; >> b=[.; 6.; -.9]; >> s=sum(a.*b) Для вычисления модуля (длины) вектора a набираем команду >> d=sqrt(sum(a.*a)) Векторное произведение определено только в трехмерном пространстве и его результатом будет также трехмерный вектор. Для этого в MATLAB имеется команда cross. >> a=[.; -.;.7]; >> b=[.; 6.; -.9]; >> c=cross(a,b) Задание: для тренировки вычислите a b b a. Вы должны получить трехмерный вектор с тремя нулевыми компонентами. Смешанное произведение трех векторов a b c дает объем параллелепипеда, построенного на этих векторах как на гранях. Задание: задайте три соответствующих векторных массива по своему усмотрению и используя команду >> V=abs(sum(a.*cross(b,c))) вычислите значение соответствующего объема. «Внешним» произведением векторов с длинами N и M является матрица размера M N, где вычисление элементов проводится по правилам матричного умножения, для чего служит команда >> c=a*b «Звездочка» служит оператором матричного умножения, а «апостроф» транспонирует матрицу b. Задание: проделайте самостоятельно соответствующие упражнения с векторами a и b различной длины.,

Читать еще:  Ошибка сертификата 0

7 Используйте далее команду whos для просмотра переменных рабочей среды. Двумерные массивы. Матрицы. Ввод матриц. Простейшие операции. Матрицу A можно рассматривать как вектор-строку из трех элементов, каждый из которых является вектор-столбцом длиной два, либо как вектор-столбец из двух элементов, каждый из которых суть вектор-строка длиной три. Следовательно, для ее введения можно использовать де команды >> A=[[;] [;] [-;]] >> A=[ -; ] Другой способ набора состоит в следующем. Начните набирать в командной строке (используя для перехода к следующей строке клавишу «Enter»), >> B=[ 7 — ] нажав после замыкающей квадратной скобки клавишу «Enter», вы получите результат: B 7 Сложение и вычитание матриц происходит поэлементно с использованием обычных алгебраических команд, поэтому нужно следить за совпадением размерностей матриц. Наберите сначала матрицу С такой же размерности, что и матрица А, и сложите их, проверив полученный результат.

8 6 >> C=[[;] [-;] [7;]]; >> S=A+C Для умножения матриц предназначена «звездочка» >> P=C*B P = Умножать матрицу на число можно также, используя «звездочку». >> P=A* (или P=*A) Транспонирование матрицы, как и вектора, производится при помощи команды. символ означает комплексное сопряжение. Для вещественных матриц эти операции приводят к одинаковым результатам. >> B’ ans = >> B.’ ans = Сопряжение и транспонирование матриц, содержащих комплексные числа, приведут к созданию разных матриц. >> K=[-i,+i;-i,-9i]

9 K =. -.i. +.i. -.i. — 9.i >> K’ ans =. +.i. +.i. -.i. + 9.i >> K.’ ans =. -.i. -.i. +.i. — 9.i Возведение квадратной матрицы в целую степень производится при помощи оператора ^. >> B=B^ B = Задание: найдите значение следующего выражения A C B A C T где верхний индекс Т означает транспонирование. Поскольку вектор-столбец или вектор-строка в MATLAB являются матрицами, у которых один из размеров равен единице, то вышеописанные операции применимы и к перемножению матриц с векторами. Задание: вычислите выражение, 7

10 Решение систем линейных алгебраических уравнений При помощи алгебраических операций с матрицей и вектор-столбцом в MATLAB можно решать системы линейных алгебраических уравнений. Решим систему с тремя неизвестными.x.x.x.; x.x.x..9; ().9x.7x.6x.. Задание: введите матрицу коэффициентов системы () в массив А, для вектора коэффициентов правой части системы используйте массив b. Решите систему при помощи символа 8 >> x=ab Проверьте правильность результата, умножив А на x. Считывание и запись данных Часто требуется найти решение системы, состоящей из большого числа линейных уравнений, причем матрица и вектор коэффициентов системы хранятся в файлах. Перед нами стоит задача решить систему, матрица и правая часть которой хранятся в текстовых файлах matr.txt, rside.txt, и записать результат в файл sol.txt. Матрица записана в файле построчно, элементы в строке отделены пробелом, вектор правой части записан в столбик. Задание: подготовьте файлы с данными системы () в стандартной программе Windows Блокнот (NotePad). Скопируйте файлы matr.txt, rside.txt в подкаталог work основного каталога MATLAB. Для считывания из файла используйте команду load,

11 для записи save. Формат вызова этих команд с выходными аргументами: >>A=load( matr.txt ); >>b=load( rside.txt ); >>x=ab; >>save sol.txt x ascii Параметр ascii означает запись в текстовом формате. После выполнения этих команд в каталоге work создается файл sol.txt, в котором в столбик записано решение системы. Посмотреть содержимое файла можно, используя любой текстовый редактор. Запись с двоичной точностью требует команды save sol.txt x ascii double. Аналогично можно записать и содержимое массива матрицы А в текстовый файл. Командой >> save sol.txt A ascii массив матрицы A записывается в файл matra.txt. Блочные матрицы. Часто в приложениях возникают матрицы, составленные из непересекающихся блочных матриц. Соответствующие размеры блоков должны совпадать. Введите матрицы A B C D и создайте из них блочную матрицу K A C B D >> A=[- ;- ]; >> B=[ ; ]; >> C=[ -;- ]; 9

12 >> D=[8 9; ]; >> K=[A B;C D] K = Составьте блочную матрицу где a S K, b. S a b Заполнение матриц при помощи индексации и создание матриц специального вида Сгенерируем матрицу Генерация матрицы осуществляется в три этапа. T. Создание массива Т размером пять на пять, состоящего из нулей.. Заполнение первой строки единицами.. Заполнение части последней строки минус единицами до последнего элемента..

13 Доступ к элементам матриц осуществляется при помощи аргумента, состоящего из двух индексов номеров строки и столбца. Например, >>A(,) вызывает элемент матрицы А, стоящий во второй строке и третьем столбце. Поэтому команды для генерации матрицы Т будут иметь вид >> A(. )= A = >> A(,:)= A = >> A(end,:end)=- A =

14 — — — Создание некоторых специальных матриц в осуществляется при помощи встроенных функций. MATLAB Заполнение прямоугольной матрицы нулями проводится обращением к встроенной функции zeros, аргументами которой является число строк и столбцов матрицы. >> A=zeros(,6) A = >> A=zeros() A = Единичная матрица генерируется функцией eye. Примеры: >> I=eye() I = >> I=eye(,8) I =

15 Матрица, состоящая из одних единиц, вызывается функцией ones: >> E=ones(,) E = Функция rand вызывает матрицу, заполненную случайным образом числами от нуля до единицы, функция randn создает матрицу чисел, распределенных по нормальному закону. >> R=rand(,) R = >> RN=randn(8) RN =

16 Функция diag формирует диагональную матрицу из векторстолбца или вектор-строки, располагая их элементы по диагонали. Для заполнения не главной, а побочной диагонали предусмотрена возможность вызова этой функции с двумя аргументами. Примеры: >> d=[ ]; >> D=diag(d) D = >> d=[;]; >> D=diag(d,) D = >> D=diag(d,-)

17 D = Подумайте, почему в двух последних случаях не указывается размер матрицы? Функция diag служит и для выделения диагонали матрицы в вектор, например >> A=[ ; ; 7]; >> d=diag(a) d = 7 Задание: заполните и запишите в файлы следующие матрицы.. G M

18 ..6. Поэлементные операции с матрицами Поэлементные операции с матрицами проводятся обычным образом, т.е. с использованием «точки» перед соответствующим оператором. Например, умножение первой матрицы на вторую (разумеется, того же размера!) производится оператором.*, деление элементов первой матрицы на соответствующие элементы второй производится с помощью оператора./, наоборот, деление элементов второй матрицы на элементы первой проводится оператором.. Введите две матрицы A 9 B 7 8. Проделайте с ними операции: >>C=A.*B >>R=A./B >>R=A.B >>P=A.^ >>PB=A.^B () Выведите последний результат в «длинном» формате, используя команду format long >> format long >>PB Обратите внимание, что повторного вычисления матрицы PB не потребовалось, так как все вычисления всегда ведутся с двойной точностью.. Контрольные вопросы.. Объясните, почему в отличие от операций сложения и вычитания можно и нужно перемножать матрицы разной 6

19 размерности. Какие параметры размерностей перемножаемых матриц должны совпадать, чтобы избежать ошибки. Объясните, почему операцию «возведение в степень» можно проводить только с квадратными матрицами и целыми степенями. Что сделал MATLAB в примере ()?. Список литературы ) Дьяконов В.П. MATLAB 6/6./6. + Simulink /. Основы применения. Полное руководство пользователя, / В.П. Дьяконов. М.: СОЛОН-Пресс,. 768с. ) Мэтьюз Д. Г. Численные методы. Использование MATLAB: [пер. с англ.], / Д. Г. Мэтьюз, К. Д. Финк. М.: Изд. дом «Вильямс»,. 7с. ) Теория аналитических функций. Аспекты приложений, / Л.В. Широков и др. Арзамас, АГПИ, 7. 87с. ) Свешников А.Г. Теория функций комплексного переменного, / А.Г. Свешников, А.Н., Тихонов М.: Наука, 979. ) Бейтмен Г. Высшие трансцендентные функции. Т., / Г. Бейтмен, А. Эрдейи. M.: Наука,

Ссылка на основную публикацию
Adblock
detector