Progress-servis55.ru

Новости из мира ПК
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Grid on в matlab

Grid on в matlab

3. Трёхмерная графика .

Графики функций двух переменных представляют из себя куски поверхностей, нависающие над областями определения функций. Отсюда ясно, что изображение графиков функций двух переменных требует реализации «трёхмерной графики» на пл оском экране дисплея компьютера.

Высокоуровневая графическая подсистема MATLABа автоматически реализует трёхмерную графику без специальных усилий со стороны пользователя. Пусть в точке с координатами x1,y1 вычислено значение функции z=f(x,y) и оно равно z1. В некоторой другой точке (то есть при другом значении аргументов) x2,y2 вычисляют значение функции z2. Продолжая этот процесс, получают массив (набор) точек (x1,y1,z1), (x2,y2,z2), (xN,yN,zN) в количестве N штук, расположенных в трёхмерном пространстве. Специальные функции системы MATLAB проводят через эти точки гладкие поверхности и отображают их проекции на плоский дисплей компбютера.

Чаще всего точки аргументов расположены в области определения функции регулярно в виде прямоугольной сетки (то есть матрицы). Такая сетка точек порождает две матрицы одной и той же структуры: первая матрица содержит значения первых координат этих точек (x — координат), а вторая матрица содержит значения вторых координат (y — координат). Обозначим первую матрицу как X, а вторую — как Y. Есть ещё и третья матрица — матрица значений функции z=f(x,y)при этих аргументах. Эту матрицу обозначим буквой Z.

Простейшей функцией построения графика функции двух переменных в системе MATLAB является функция

plot3( X , Y , Z )

где X, Y и Z — матрицы одинаковых размеров, смысл которых мы только что объяснили.

В системе MATLAB имеется специальная функция для получения двумерных массивов X и Y по одномерным массивам x, y.

Пусть по оси x задан диапазон значений в виде вектора

u = -2 : 0.1 : 2

а по оси y этот диапазон есть

Для получения матриц X и Y, представляющих первые и вторые координаты получающейся прямоугольной сетки точек используют специальную функцию системы MATLAB:

[ X , Y ] = meshgrid( u, v )

Как мы видим, эта функция получает на входе два одномерных массива (вектора), представляющие массивы точек на осях координат, и возвращает сразу два искомых двумерных массива. На прямоугольной сетке точек вычисляем значения функции, например функции exp:

Z = exp( — X.^2 — Y.^2 )

Наконец, применяя описанную выше функцию plot3,получаем следующее изображение трёхмерного графика этой функции:

Из этого рисунка видно, что функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трёхмерной поверхности плоскостями, параллельными плоскости yOz. По-другому можно сказать, что каждая линия получается из отрезков прямых, соединяющих набор точек, координаты которых берутся из одинаковых столбцов матриц X, Y и Z. То есть, первая линия соответствует первым столбцам матриц X, Y Z; вторая линия — вторым столбцам этих матриц и так далее.

Для построения трёхмерных линий, задаваемых параметрически применяется другая форма вызова функции plot3:

plot3( x, y, z )

где x, y и z являются одномерными массивами координат точек, которые и нужно последовательно соединить отрезками прямых. Например, следующий фрагмент кода

t = 0 : pi/50 : 10*pi ;

x = sin( t );

y = cos( t );

plot3( x , y , t );

grid on

где применена известная по плоским графикам команда

grid on

для проставления сетки координатных значений в области построения графика (также допустимо использовать команды и функции по оформлению графиков, ранее рассмотренные для «плоского» случая), позволяет построить винтовую линию, изображение которой показано на следующем рисунке:

Помимо этой простейшей функции система MATLAB располагает ещё рядом функций, позволяющих добиваться большей реалистичности в изображении трёхмерных графиков. Это функции mesh, surf и surfl.

Функция mesh соединяет вычисленные соседние точки поверхности графика отрезками прямых и показывает в графическом окне системы MATLAB плоскую проекцию такого объёмного «каркасно-ребристого» ( по-английски зовётся wireframe mesh) тела. Вместо ранее показанного при помощи функции plot3 графика функции

exp( — X.^2 — Y.^2 )

можно получить вот такое изображение

Для лучшего восприятия «объёмности» изображения разные рёбра автоматически окрашиваются в разные цвета. Кроме того (в отличие от функции plot3) осуществляется удаление невидимых линий. Если вы считаете, что изображённое ребристое тело является прозрачным и не должно скрывать задних линий, то можно ввести команду hidden off , после чего такие линии появятся на изображении. Более плотного изображения поверхности можно добиться, если вместо

Читать еще:  Matlab глобальные переменные

функции mesh применить функцию surf( X, Y, Z ).

В результате получается следующее изображение представляющее плотную (непрозрачную) сетчатую поверхность, причём отдельные ячейки (грани) этой сетчатой поверхности (плоские четырёхугольники) автоматически окрашиваются в разные цвета.

С помощью функции surf получаются хотя и искусственно раскрашенные, но весьма наглядные изображения. Если же мы хотим добиться более естественных и объективных способов окрашивания поверхностей, то следует использовать функцию surfl.

Функция surfl трактует поверхность графика как материальную поверхность с определёнными физическими свойствами по отражению света. По умолчанию задаётся некоторый источник света, освещающий такую материальную поверхность, после чего рассчитываеются траектории отражённых лучей, попадающих в объектив условной камеры. Изображение в такой камере и показывается в графическом окне системы MATLAB.

Так как разные материалы по-разному отражают падающие лучи, то можно подобрать некоторый материал, чтобы получить наилучшее (с точки зрения пользователя) изображение. В частности, можно использовать функцию

colormap( copper )

с помощью которой для изображения графика выбирается набор цветов (по-английски — colormap), который характерен для света, отражающегося от медной поверхности (медь по-английски — copper). После этого применение функции

surfl( X, Y, Z )

вместо surf(X,Y,Z) приводит к получению очень реалистически выглядящего и очень наглядного графика:

Можно с такого графика убрать чёрные линии, изображающие рёбра, а также добиться ещё более плавного перехода освещения поверхности, если выполнить команду

shading interp

означающую, что теперь цвет (освещённость) будет меняться даже внутри отдельных граней (ячеек). В итоге будет получаться совсем уж реальное изображение некоторой объёмной фигуры. Лучше это или хуже для задачи изображения графиков функций двух переменных — судить конкретному пользователю.

Grid on в matlab

Display or hide axes grid lines

Syntax

Description

grid on displays the major gr >gca command. Major grid lines extend from each tick mark.

grid off removes all grid lines from the current axes or chart.

grid toggles the visibility of the major grid lines.

grid minor toggles the visibility of the minor grid lines. Minor grid lines lie between the tick marks. Not all types of charts support minor grid lines.

gr >target , ___ ) uses the axes or chart specified by target instead of the current axes or chart. Specify target as the first input argument. Use single quotes around other input arguments, for example, grid(target,’on’) .

Examples

Display Grid Lines

Display the grid lines for a sine plot.

Remove Grid Lines

Create a surface plot and remove the grid lines.

Display Major and Minor Grid Lines

Display the major and minor grid lines for a sine plot.

Display Grid Lines on Specific Axes

Starting in R2019b, you can display a tiling of plots using the tiledlayout and nexttile functions. Call the tiledlayout function to create a 2-by-1 tiled chart layout. Call the nexttile function to create the axes objects ax1 and ax2 . Plot data into each axes. Then display gr >ax2 to the grid function.

Input Arguments

target — Target axes or chart
axes | chart | array of axes or charts

Target axes or chart, specified as one of the following:

Any type of axes object: an Axes , PolarAxes , or GeographicAxes object.

A chart object that has a GridVisible property. For example, a HeatmapChart object has a GridVisible property.

If you do not specify the target, then the grid function affects the graphics object returned by the gca command.

When working with Cartesian axes, some axes properties affect the appearance of the grid lines. This table lists a subset of axes properties related to the grid lines.

Axes PropertyDescription
XTick , YTick , ZTickLocation of tick marks and major grid lines for each axis direction
XGrid , YGrid , ZGridDisplay of major grid lines for each axis direction
XMinorGrid , YMinorGrid , ZMinorGridDisplay of minor grid lines for each axis direction
LineWidthLine width of grid lines, axes box outline, and tick marks
GridLineStyleMajor grid line style
MinorGridLineStyleMinor grid line style
GridColorMajor grid line color
MinorGridColorMinor grid line color
GridAlphaMajor grid line transparency
MinorGridAlphaMinor grid line transparency
LayerLocation of grid lines in relation to the plotted data

When working with polar axes, some polar axes properties affect the appearance of the grid lines. This table lists a subset of polar axes properties related to the grid lines.

PolarAxes PropertyDescription
ThetaTick , RTickLocation of tick marks and major grid lines for each axis direction
ThetaGrid , RGridDisplay of major grid lines for each axis direction
ThetaMinorGrid , RMinorGridDisplay of minor grid lines for each axis direction
LineWidthWidth of outline, tick marks, and grid lines
GridLineStyleMajor grid line style
MinorGridLineStyleMinor grid line style
GridColorMajor grid line color
MinorGridColorMinor grid line color
GridAlphaMajor grid line transparency
MinorGridAlphaMinor grid line transparency
LayerLocation of grid lines in relation to the plotted data

When working with geographic axes, some geographic axes properties affect the appearance of the gr >GeographicAxes objects do not support minor grid lines.

GeographicAxes PropertyDescription
GridDisplay of latitude and longitude grid lines
LineWidthLine width of grid lines, box outline, and tick marks
GridLineStyleGrid line style
GridColorColor of grid lines
GridAlphaGrid line transparency

Algorithms

The grid function sets these graphics object properties to either ‘on’ or ‘off’ :

XGrid , YGrid , and ZGrid when working with Cartesian Axes objects.

ThetaGrid and RGrid when working with PolarAxes objects.

Grid when working with GeographicAxes objects.

GridVisible when working with other types of graphics objects, such as a HeatmapChart object.

Подготовка графиков в MatLab

В написании научных статей немалую часть времени занимает подготовка иллюстраций, графиков и диаграмм. Хочу поделиться некоторыми мыслями и примерами того, как можно ускорить этот процесс. Материал пригодиться тем, кто пользуется системой MatLab.

MatLab предоставляет широкие возможности по отображению графической информации в виде графиков, диаграмм, и т.п. Однако не всегда получаемые по умолчанию иллюстрации удовлетворяют требованиям оформления статей. Для этого в системе MatLab существует множество настроек. И чтобы ускорить подготовку иллюстраций предлагаю воспользоваться несколькими строчками кода, которые помогут помочь настроить отображение графиков.

Прежде всего, необходимо настроить шрифты, которые будут использоваться для вывода значений осей и надписей на графиках, что также помогает в случаях неправильного отображения надписей на русском языке:

Затем необходимо настроить размер графика и его положение на экране, например, с отображением на весь экран:

При необходимости вставляем название графика:

Далее можно включить построение нескольких графиков в одном окне, c использованием тех же осей и свойств графика:

Строим графики с определенным цветом, стилем и толщиной линии:

Вставляем легенду в график с определенным положением на рисунке, например справа внизу:

При построении графика в MatLab дробные значения подписей на осях координат отображаются с разделителем в виде точки, тогда как, разделитель дробной и целой части у нас принято отображать запятой.

Чтобы не изменять вручную все значения подписей данных осей через меню графика,

Код «прореживает» подписи осей x и y, а также исправляет точки на запятые в подписях на оси y. Для других осей необходимо повторить аналогичные процедуры.

И в заключении отобразим линии координатной сетки:

Для удобства использования, чтобы не повторять каждый раз эти действия, заключаем написанный код в функцию, в параметрах которой указываются настройки отображения графиков и их данные.

Выполним с заранее подготовленными данными.

В результате получаем вот такой график:

По умолчанию MatLab отображает греческую букву «фи» как в кириллице «ф». Одним из способов отобразить привычную греческую букву «фи» с петлеобразным начертанием, является выбор специального шрифта c греческими буквами. Скачиваем, например, шрифт Greek Normal отсюда и устанавливаем. Просмотрев шрифт Greek в таблице символов, замечаем, что в этом шрифте буква «фи» существует в двух вариантах, причем для кода латинской «f» получим тот же результат что и в MatLab в виде «ф», а для кода латинской «j» должен быть получен требуемый результат.

В результате использования приведенного кода для построения графиков с помощью системы MatLab удалось:

  • Решить проблему с некорректным отображением кириллических шрифтов;
  • Автоматически заменить разделитель целой и дробной части числа с точки на запятую в графике;
  • Отобразить греческую букву фи в петлеобразном начертании.

PS Если кто-то знает простой способ отобразить символ греческой буквы «фи» с кодом unicode-03С6 в графиках MatLab, напишите пожалуйста в комментариях.

UPD Еще один способ, подсказанный в комментариях, для отображения «фи» с петлеобразным начертанием:

Grid on в matlab

Ниже показаны примеры записи функции plot() с разным набором маркеров.

x = 0:0.1:2*pi;
y = sin(x);

subplot(2,2,1); plot(x,y,’r-‘);
subplot(2,2,2); plot(x,y,’r-‘,x,y,’ko’);
subplot(2,2,3); plot(y,’b—‘);
subplot(2,2,4); plot(y,’b—+’);

Результат работы фрагмента программы приведен на рис. 3.7. Представленный пример показывает, каким образом можно комбинировать маркеры для достижения требуемого результата. А на рис. 3.7 наглядно видно к каким визуальным эффектам приводят разные маркеры, используемые в программе. Следует особо отметить, что в четвертой строчке программы по сути отображаются два графика: первый рисуется красным цветом и непрерывной линией, а второй черными кружками заданных точек графика. Остальные варианты записи маркеров очевидны.

Рис. 3.7. Примеры отображения графиков с разными типами маркеров

Из примеров рис. 3.7 видно, что масштаб графиков по оси Ox несколько больше реальных значений. Дело в том, что система MatLab автоматически масштабирует систему координат для полного представления данных. Однако такая автоматическая настройка не всегда может удовлетворять интересам пользователя. Иногда требуется выделить отдельный фрагмент графика и только его показать целиком. Для этого используется функция axis() языка MatLab, которая имеет следующий синтаксис:

axis( [ xmin, xmax, ymin, ymax ] ),

где название указанных параметров говорят сами за себя.

Воспользуемся данной функцией для отображения графика функции синуса в пределах от 0 до :

x = 0:0.1:2*pi;
y = sin(x);

subplot(1,2,1);
plot(x,y);
axis([0 2*pi -1 1]);

subplot(1,2,2);
plot(x,y);
axis([0 pi 0 1]);

Из результата работы программы (рис. 3.8) видно, что несмотря на то, что функция синуса задана в диапазоне от 0 до , с помощью функции axis() можно отобразить как весь график, так и его фрагмент в пределах от 0 до .

Рис. 3.8. Пример работы функции axis()

В заключении данного параграфа рассмотрим возможности создания подписей графиков, осей и отображения сетки на графике. Для этого используются функции языка MatLab, перечисленные в табл. 3.4.

Таблица 3.4. Функции оформления графиков

Название

Описание

grid [on, off]

Включает/выключает сетку на графике

title(‘заголовок графика’)

Создает надпись заголовка графика

xlabel(‘подпись оси Ox’)

Создает подпись оси Ox

ylabel(‘подпись оси Oy’)

Создает подпись оси Oy

text(x,y,’текст’)

Создает текстовую надпись в координатах (x,y).

Рассмотрим работу данных функций в следующем примере:

x = 0:0.1:2*pi;
y = sin(x);

plot(x,y);
axis([0 2*pi -1 1]);
grid on;
title(‘The graphic of sin(x) function’);
xlabel(‘The coordinate of Ox’);
ylabel(‘The coordinate of Oy’);
text(3.05,0.16,’leftarrow sin(x)’);

Из результата работы данной программы, представленного на рис. 3.9, видно каким образом работают функции создания подписей на графике, а также отображение сетки графика.

Таким образом, используя описанный набор функций и параметров, можно достичь желаемого способа оформления графиков в системе MatLab.

Рис. 3.9. Пример работы функций оформления графика

© 2020 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Ссылка на основную публикацию
Adblock
detector
×
×