Progress-servis55.ru

Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Matlab figure свойства

Matlab figure свойства

1. Построение двумерных графиков функций

В результате вычислений в системе MATLAB обычно получается большой массив данных, который трудно анализировать без наглядной визуализации. Поэтому система визуализации, встроенная в MATLAB, придаёт этому пакету особую практическую ценность.

Графические возможности системы MATLAB являются мощными и разнообразными. В первую очередь целесообразно изучить наиболее простые в использовании возможности. Их часто называют высокоуровневой графикой. Это название отражает тот приятный факт, что пользователю нет никакой необходимости вникать во все тонкие и глубоко спрятанные детали работы с графикой.

Например, нет ничего проще, чем построить график функции одной вещественной переменной. Следующие команды

x = 0 : 0.01 : 2;

y = sin( x );

вычисляют массив y значений функции sin для заданного набора аргументов.

После этого одной единственной командой

plot( x , y )

удаётся построить вполне качественно выглядящий график функции:

MATLAB показывает графические объекты в специальных графических окнах, имеющих в заголовке слово Figure (изображение, внешний вид, фигура).

При построении графиков функций сразу проявляется тот факт, что очень большую часть работы MATLAB берёт на себя. Мы в командной строке ввели лишь одну команду, а система сама создала графическое окно, построила оси координат, вычислила диапазоны изменения переменных x и y; проставила на осях метки и соответствующие им числовые значения, провела через опорные точки график функции некоторым, выбранным по умолчанию, цветом; в заголовке графического окна надписала номер графика в текущем сеансе работы.

Если мы, не убирая с экрана дисплея первое графическое окно, вводим и исполняем ещё один набор команд

x = 0 : 0.01 : 2;

z = cos( x );

plot( x , z )

то получаем новый график функции в том же самом графическом окне (при этом старые оси координат и график в нём пропадают — этого можно также добиться командой clf, а командой cla удаляют только график с приведением осей координат к их стандартным диапазонам от 0 до 1):

Если нужно второй график провести «поверх первого графика», то перед исполнением второй графической команды plot, нужно выполнить команду

hold on

которая предназначена для удержания текущего графического окна. В результате будет получено следующее изображение:

Того же самого можно добиться, потребовав от функции plot построить сразу несколько графиков в рамках одних и тех же осей координат:

x = 0 : 0.01 : 2;

y = sin( x ); z = cos( x );

plot( x , y , x , z )

У такого способа есть ещё одно (кроме экономии на команде hold on) преимущество, так как разные графики автоматически строятся разным цветом.

К недостаткам указанных способов построения нескольких графиков в пределах одних и тех же осей координат относится использование одного и того же диапазона изменения координат, что при несопоставимым значениях двух функций приведёт к плохому изображению графика одной из них.

Если всё же нужно одновременно визуализировать несколько графиков так, чтобы они не мешали друг другу, то это можно сделать двумя способами. Во-первых, можно построить их в разных графических окнах. Например, построив графики функций sin и cos в пределах одного графического окна (показано выше), вычисляем значения для функции exp:

w = exp( x );

После этого выполняем команды

figure; plot( x , w )

которые построят график функции exp в новом графическом окне, так как команда figure создаёт новое (добавочное) графическое окно, и все последующие за ней команды построения графиков выводят их в новое окно:

В результате в первом графическом окне (Figure No. 1) по вертикальной оси переменные изменяются в диапазоне от -0.5 до 1, а во втором графическом окне (Figure No. 2) — от 1 до 8.

Вторым решением рассматриваемой задачи показа сразу нескольких графиков без конфликта диапазонов осей координат является использование функции subplot. Эта функция позволяет разбить область вывода графической информации на несколько подобластей, в каждую из которых можно вывести графики различных функций.

Например, для ранее выполненных вычислений с функциями sin, cos и exp, строим графики первых двух функций в первой подобласти, а график третьей функции — во второй подобласти одного и того же графического окна:

subplot(1,2,1); plot(x,y,x,z)

subplot(1,2,2); plot(x,w)

в результате чего получаем графическое окно следующего вида:

Диапазоны изменения переменных на осях координат этих подобластей независимы друг от друга.

Функция subplot принимает три числовых аргумента, первый из которых равен числу рядов подобластей, второе число равно числу колонок подобластей, а третье число — номеру подобласти (номер отсчитывается вдоль рядов с переходом на новый ряд по исчерпанию).

Если для одиночного графика диапазоны изменения переменных вдоль одной или обоих осей координат слишком велики, то можно воспользоваться функциями построения графиков в логарифмических масштабах. Для этого предназначены функции semilogx, semilogy и loglog. Подробную информацию по использованию этих функций всегда можно получитьпри помощи команды

help имя_функции

набираемой с клавиатуры и выполняемой в командном окне системы MATLAB.

Итак, уже рассмотренные примеры показывают, как подсистема высокоуровневой графики MATLABа легко справляется с различными случаями построения графиков, не требуя слишком большой работы от пользователя. Ещё одним таким примером является построение графиков в полярных координатах. Например, если нужно построить график функции r = sin( 3 f ) в полярных координатах, то следующие несколько команд

phi = 0 : 0.01 : 2*pi; r = sin( 3* phi );

figure

Create figure window

Syntax

Description

figure creates a new figure window using default property values. The resulting figure is the current figure.

Читать еще:  Функция mean matlab

figure( Name,Value ) modifies properties of the figure using one or more name-value pair arguments. For example, figure(‘Color’,’white’) sets the background color to white.

f = figure( ___ ) returns the Figure object. Use f to query or modify properties of the figure after it is created.

figure( f ) makes the figure specified by f the current figure and displays it on top of all other figures.

figure( n ) finds a figure in which the Number property is equal to n , and makes it the current figure. If no figure exists with that property value, MATLAB ® creates a new figure and sets its Number property to n .

Examples

Specify Figure Title

Create a figure, and specify the Name property. By default, the resulting title includes the figure number.

Specify the Name property again, but this time, set the NumberTitle property to ‘off’ . The resulting title does not include the figure number.

Working with Multiple Figures Simultaneously

Create two figures, and then create a line plot. By default, the plot command targets the current figure.

Set the current figure to f1 , so that it is the target for the next plot. Then create a scatter plot.

Input Arguments

f — Target figure
Figure object

Target figure, specified as a Figure object.

n — Target figure number
scalar integer value

Target figure number, specified as a scalar integer value. When you specify this argument, MATLAB searches for an existing figure in which the Number property is equal to n . If no figure exists with that property value, MATLAB creates a new figure and sets its Number property to n . By default, the Number property value is displayed in the title of the figure.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear ins >’ ‘ ). You can specify several name and value pair arguments as Name1,Value1. NameN,ValueN .

The properties listed here are only a subset. For a full list, see Figure Properties .

‘Name’ — Name
» (default) | character vector | string scalar

Name of the figure, specified as a character vector or a string scalar.

Example: figure(‘Name’,’Results’) sets the name of the figure to ‘Results’ .

By default, the name is ‘Figure n ‘ , where n is an integer. When you specify the Name property, the title of the figure becomes ‘Figure n : name ‘ . If you want only the Name value to appear, set IntegerHandle or NumberTitle to ‘off’ .

‘Color’ — Background color
RGB triplet | hexadecimal color code | ‘r’ | ‘g’ | ‘b’ | .

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. If you specify ‘none’ , the background color appears black on screen, but if you print the figure, the background prints as though the figure window is transparent.

For a custom color, specify an RGB triplet or a hexadecimal color code.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1] ; for example, [0.4 0.6 0.7] .

A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol ( # ) followed by three or six hexadecimal digits, which can range from 0 to F . The values are not case sensitive. Thus, the color codes ‘#FF8800’ , ‘#ff8800’ , ‘#F80’ , and ‘#f80’ are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
‘red’‘r’[1 0 0]‘#FF0000’
‘green’‘g’[0 1 0]‘#00FF00’

‘blue’‘b’[0 0 1]‘#0000FF’

‘cyan’‘c’[0 1 1]‘#00FFFF’

‘magenta’‘m’[1 0 1]‘#FF00FF’

‘yellow’‘y’[1 1 0]‘#FFFF00’

‘black’‘k’[0 0 0]‘#000000’

‘white’‘w’[1 1 1]‘#FFFFFF’

‘none’Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
[0 0.4470 0.7410]‘#0072BD’
[0.8500 0.3250 0.0980]‘#D95319’

[0.9290 0.6940 0.1250]‘#EDB120’

[0.4940 0.1840 0.5560]‘#7E2F8E’

[0.4660 0.6740 0.1880]‘#77AC30’

[0.3010 0.7450 0.9330]‘#4DBEEE’

[0.6350 0.0780 0.1840]‘#A2142F’

Data Types: double | char

‘Position’ — Location and size of drawable area
[left bottom width height]

Location and size of the drawable area, specified as a vector of the form [left bottom width height] . This area excludes the figure borders, title bar, menu bar, and tool bars.

This table describes each element in the Position vector.

ElementDescription
leftDistance from the left edge of the primary display to the inner left edge of the window. This value can be negative on systems that have more than one monitor.

If the figure is docked, then this value is relative to the Figure panel within the MATLAB desktop.

bottomDistance from the bottom edge of the primary display to the inner bottom edge of the window. This value can be negative on systems that have more than one monitor.

If the figure is docked, then this value is relative to the Figure panel within the MATLAB desktop.

widthDistance between the right and left inner edges of the figure.
heightDistance between the top and bottom inner edges of the window.

All measurements are in units specified by the Units property.

You cannot specify the figure Position property when the figure is docked.

In MATLAB Online™ , the bottom and left elements of the Position vector are ignored.

To place the full window, including the borders, title bar, menu bar, tool bars, use the OuterPosition property.

The Windows ® operating system enforces a minimum window width and a maximum window size. If you specify a figure size outside of those limits, the displayed figure will conform to the limits instead of the size you specified.

Подготовка графиков в MatLab

В написании научных статей немалую часть времени занимает подготовка иллюстраций, графиков и диаграмм. Хочу поделиться некоторыми мыслями и примерами того, как можно ускорить этот процесс. Материал пригодиться тем, кто пользуется системой MatLab.

MatLab предоставляет широкие возможности по отображению графической информации в виде графиков, диаграмм, и т.п. Однако не всегда получаемые по умолчанию иллюстрации удовлетворяют требованиям оформления статей. Для этого в системе MatLab существует множество настроек. И чтобы ускорить подготовку иллюстраций предлагаю воспользоваться несколькими строчками кода, которые помогут помочь настроить отображение графиков.

Прежде всего, необходимо настроить шрифты, которые будут использоваться для вывода значений осей и надписей на графиках, что также помогает в случаях неправильного отображения надписей на русском языке:

Затем необходимо настроить размер графика и его положение на экране, например, с отображением на весь экран:

При необходимости вставляем название графика:

Далее можно включить построение нескольких графиков в одном окне, c использованием тех же осей и свойств графика:

Строим графики с определенным цветом, стилем и толщиной линии:

Вставляем легенду в график с определенным положением на рисунке, например справа внизу:

При построении графика в MatLab дробные значения подписей на осях координат отображаются с разделителем в виде точки, тогда как, разделитель дробной и целой части у нас принято отображать запятой.

Чтобы не изменять вручную все значения подписей данных осей через меню графика,

Код «прореживает» подписи осей x и y, а также исправляет точки на запятые в подписях на оси y. Для других осей необходимо повторить аналогичные процедуры.

И в заключении отобразим линии координатной сетки:

Для удобства использования, чтобы не повторять каждый раз эти действия, заключаем написанный код в функцию, в параметрах которой указываются настройки отображения графиков и их данные.

Выполним с заранее подготовленными данными.

В результате получаем вот такой график:

По умолчанию MatLab отображает греческую букву «фи» как в кириллице «ф». Одним из способов отобразить привычную греческую букву «фи» с петлеобразным начертанием, является выбор специального шрифта c греческими буквами. Скачиваем, например, шрифт Greek Normal отсюда и устанавливаем. Просмотрев шрифт Greek в таблице символов, замечаем, что в этом шрифте буква «фи» существует в двух вариантах, причем для кода латинской «f» получим тот же результат что и в MatLab в виде «ф», а для кода латинской «j» должен быть получен требуемый результат.

В результате использования приведенного кода для построения графиков с помощью системы MatLab удалось:

  • Решить проблему с некорректным отображением кириллических шрифтов;
  • Автоматически заменить разделитель целой и дробной части числа с точки на запятую в графике;
  • Отобразить греческую букву фи в петлеобразном начертании.

PS Если кто-то знает простой способ отобразить символ греческой буквы «фи» с кодом unicode-03С6 в графиках MatLab, напишите пожалуйста в комментариях.

UPD Еще один способ, подсказанный в комментариях, для отображения «фи» с петлеобразным начертанием:

Matlab figure свойства

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

3.1. Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до . Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Рис. 3.1. Отображение функции синуса с помощью функции plot().

Функцию plot() можно записать и с одним аргументом x или y:

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

x = 0:0.01:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,x,y2);

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а – plot(x); б – plot(y).

Рис. 3.3. Отображение двух графиков в одних координатных осях.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

y1 = sin(x);
y2 = cos(x);

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу

в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией

plot([y1’ y2’]); % апострофы переводят вектор-строку
% в вектор-столбец

в виде двух графиков (рис. 3.4).

Рис. 3.4. Отображение двумерной матрицы в виде двух графиков.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

plot(x1, y1); % рисование первого графика
figure; % создание 2-го графического окна
plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического окна, которое необходимо создать или сделать активным, если оно уже создано. Таким образом, вышеприведенную программу можно записать так.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1); %создание окна с номером 1
plot(x1, y1); % рисование первого графика
figure(2); % создание графического окна с номером 2
plot(x2, y2); % рисование 2-го графика во 2-м окне

При выполнении данной программы на экране всегда будут отображены только два графических окна с номерами 1 и 2, и в них показаны графики функций синуса и косинуса соответственно.

В некоторых случаях большего удобства представления информации можно достичь, отображая два графика в одном графическом окне. Это достигается путем использования функции subplot(), имеющая следующий синтаксис:

Рассмотрим пример отображения двух графиков друг под другом вышеприведенных функций синуса и косинуса.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1);
subplot(2,1,1); % делим окно на 2 строки и один столбец
plot(x1,y1); % отображение первого графика
subplot(2,1,2); % строим 2-ю координатную ось
plot(x2,y2); % отображаем 2-й график в новых осях

Результат работы программы показан на рис. 3.5.

Аналогичным образом можно выводить два и более графиков в столбец, в виде таблицы и т.п. Кроме того, можно указывать точные координаты расположения графика в графическом окне. Для этого используется параметр position в функции subplot():

subplot(‘position’, [left bottom width height]);

где left – смещение от левой стороны окна; bottom – смещение от нижней стороны окна; w >

Рис. 3.5. Пример работы функции subplot.

Ниже представлен фрагмент программы отображения графика функции синуса в центре графического окна. Результат работы показан на рис. 3.6.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

subplot(‘position’, [0.33 0.33 0.33 0.33]);
plot(x1,y1);

В данном примере функция subplot() смещает график на треть от левой и нижней границ окна и рисует график с шириной и высотой в треть графического окна. В результате, получается эффект рисования функции синуса по центру основного окна.

Таким образом, используя параметр position можно произвольно размещать графические элементы в плоскости окна.

Рис. 3.6. Пример работы функции subplot с параметром position.

© 2020 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Ссылка на основную публикацию
Adblock
detector