Размерность матрицы matlab
Размерность матрицы matlab
Выше были рассмотрены операции с простыми переменными. Однако с их помощью сложно описывать сложные данные, такие как случайный сигнал, поступающий на вход фильтра или хранить кадр изображения и т.п. Поэтому в языках высокого уровня предусмотрена возможность хранить значения в виде массивов. В MatLab эту роль выполняют векторы и матрицы.
Ниже показан пример задания вектора с именем a, и содержащий значения 1, 2, 3, 4:
a = [1 2 3 4]; % вектор-строка
Для доступа к тому или иному элементу вектора используется следующая конструкция языка:
disp( a(1) ); % отображение значения 1-го элемента вектора
disp( a(2) ); % отображение значения 2-го элемента вектора
disp( a(3) ); % отображение значения 3-го элемента вектора
disp( a(4) ); % отображение значения 4-го элемента вектора
т.е. нужно указать имя вектора и в круглых скобках написать номер индекса элемента, с которым предполагается работать. Например, для изменения значения 2-го элемента массива на 10 достаточно записать
a(2) = 10; % изменение значения 2-го элемента на 10
Часто возникает необходимость определения общего числа элементов в векторе, т.е. определения его размера. Это можно сделать, воспользовавшись функцией length() следующим образом:
N = length(a); % (N=4) число элементов массива а
Если требуется задать вектор-столбец, то это можно сделать так
a = [1; 2; 3; 4]; % вектор-столбец
b = [1 2 3 4]’; % вектор-столбец
при этом доступ к элементам векторов осуществляется также как и для векторов-строк.
Следует отметить, что векторы можно составлять не только из отдельных чисел или переменных, но и из векторов. Например, следующий фрагмент программы показывает, как можно создавать один вектор на основе другого:
a = [1 2 3 4]; % начальный вектор a = [1 2 3 4]
b = [a 5 6]; % второй вектор b = [1 2 3 4 5 6]
Здесь вектор b состоит из шести элементов и создан на основе вектора а. Используя этот прием, можно осуществлять увеличение размера векторов в процессе работы программы:
a = [a 5]; % увеличение вектора а на один элемент
Недостатком описанного способа задания (инициализации) векторов является сложность определения векторов больших размеров, состоящих, например, из 100 или 1000 элементов. Чтобы решить данную задачу, в MatLab существуют функции инициализации векторов нулями, единицами или случайными значениями:
a1 = zeros(1, 100); % вектор-строка, 100 элементов с
% нулевыми значениями
a2 = zeros(100, 1); % вектор-столбец, 100 элементов с
% нулевыми значениями
a3 = ones(1, 1000); % вектор-строка, 1000 элементов с
% единичными значениями
a4 = ones(1000, 1); % вектор-столбец, 1000 элементов с
% единичными значениями
a5 = rand(1000, 1); % вектор-столбец, 1000 элементов со
% случайными значениями
Матрицы в MatLab задаются аналогично векторам с той лишь разницей, что указываются обе размерности. Приведем пример инициализации единичной матрицы размером 3х3:
E = [1 0 0; 0 1 0; 0 01]; % единичная матрица 3х3
E = [1 0 0
0 1 0
0 0 1]; % единичная матрица 3х3
Аналогичным образом можно задавать любые другие матрицы, а также использовать приведенные выше функции zeros(), ones() и rand(), например:
A1 = zeros(10,10); % нулевая матрица 10х10 элементов
A2 = zeros(10); % нулевая матрица 10х10 элементов
A3 = ones(5); % матрица 5х5, состоящая из единиц
A4 = rand(100); % матрица 100х100, из случайных чисел
Для доступа к элементам матрицы применяется такой же синтаксис как и для векторов, но с указанием строки и столбца где находится требуемый элемент:
A = [1 2 3;4 5 6;7 8 9]; % матрица 3х3
disp( A(2,1) ); % вывод на экран элемента, стоящего во
% второй строке первого столбца, т.е. 4
disp( A(1,2) ); % вывод на экран элемента, стоящего в
% первой строке второго столбца, т.е. 2
Также возможны операции выделения указанной части матрицы, например:
B1 = A(:,1); % B1 = [1; 4; 7] – выделение первого столбца
B2 = A(2,:); % B2 = [1 2 3] – выделение первой строки
B3 = A(1:2,2:3); % B3 = [2 3; 5 6] – выделение первых двух
% строк и 2-го и 3-го столбцов матрицы А.
Размерность любой матрицы или вектора в MatLab можно определить с помощью функции size(), которая возвращает число строк и столбцов переменной, указанной в качестве аргумента:
a = 5; % переменная а
A = [1 2 3]; % вектор-строка
B = [1 2 3; 4 5 6]; % матрица 2х3
size(a) % 1х1
size(A) % 1х3
size(B) % 2х3
© 2020 Научная библиотека
Копирование информации со страницы разрешается только с указанием ссылки на данный сайт
Размерность матрицы matlab
sz = size( A ) returns a row vector whose elements are the lengths of the corresponding dimensions of A . For example, if A is a 3-by-4 matrix, then size(A) returns the vector [3 4] .
If A is a table or timetable, then size(A) returns a two-element row vector consisting of the number of rows and the number of table variables.
szdim = size( A , dim ) returns the length of dimension dim when dim is a positive integer scalar. Starting in R2019b, you can also specify dim as a vector of positive integers to query multiple dimension lengths at a time. For example, size(A,[2 3]) returns the lengths of the second and third dimensions of A in the 1-by-2 row vector szdim .
szdim = size( A , dim1,dim2,…,dimN ) returns the lengths of dimensions dim1,dim2,…,dimN in the row vector szdim (starting in R2019b).
[ sz1. szN ] = size( ___ ) returns the lengths of the queried dimensions of A separately.
Examples
Size of 4-D Array
Create a random 4-D array and return its size.
Query only the length of the second dimension of A .
Starting in R2019b, you can query multiple dimension lengths at a time by specifying a vector dimension argument. For example, find the lengths of the first and third dimensions of A .
Find the lengths of the second through fourth dimensions of A .
Alternatively, you can list the queried dimensions as separate input arguments.
Size of Table
Create a table with 5 rows and 4 variables.
Find the size of the table. Although the BloodPressure variable contains two columns, size only counts the number of variables.
Dimension Lengths as Separate Arguments
Create a random matrix and return the number of rows and columns separately.
Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, a vector, a matrix, or a multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | char | string | struct | function_handle | cell | categorical | datetime | duration | calendarDuration | table | timetable
Complex Number Support: Yes
dim — Queried dimensions
positive integer scalar | vector of positive integer scalars
Queried dimensions, specified as a positive integer scalar or vector of positive integer scalars. If an element of dim is larger than ndims(A) , then size returns 1 in the corresponding element of the output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
dim1,dim2,…,dimN — List of queried dimensions
positive integer scalars
List of queried dimensions, specified as positive integer scalars separated by commas. If an element of the list is larger than ndims(A) , then size returns 1 in the corresponding element of the output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Output Arguments
sz — Array size
row vector of nonnegative integers
Array size, returned as a row vector of nonnegative integers.
Each element of sz represents the length of the corresponding dimension of A . If any element of sz is equal to 0 , then A is an empty array.
If A is a scalar, then sz is the row vector [1 1] .
If A is a table or timetable, then sz is a two-element row vector containing the number of rows and the number of variables. Multiple columns within a single variable are not counted.
If A is a character vector of type char , then size returns the row vector [1 M] where M is the number of characters. However, if A is a string scalar, size returns [1 1] because it is a single element of a string array. For example, compare the output of size for a character vector and string:
Стандартные функции Matlab
Все операции в Matlab ориентированы прежде всего на работу с матрицами, но могут выть использованы при работе с векторами и скалярными переменными.
Элементарные функции Matlab. К ним относятся следующие функции:
sin(x) sinh(x) asin(x) asinh(x)
cos(x) cosh(x) acos(x) acosh(x)
tan(x) tanh(x) atan(x) atan2(x,y) atanh(x)
cot(x) coth(x) acot(x) acoth(x)
exp(x) log(x) log10(x) log2(x) pow2(x) sqrt(x)
Функции комплексного аргумента:
abs(z) – модуль комплексного числа; angle(z) – аргумент;
complex(x, y) – формирование комплексного числа x+y*i;
conj(z) – возвращает комплексно-сопряженное (по отношению к z) число;
real(z) – возвращает действительную часть; imag(z) – мнимую часть.
Функции округления и нецелочисленного деления:
fix(x) – округление в сторону к нулю, floor(x) – к –¥, ceil(x) – к +¥,
round(x) – до ближайшего целого;
mod(x, y) – остаток от деления x/y с учетом знака,
rem(x, y) – то же, без учета знака;
sign(x) – знак числа (+1/–1).
Элементарные функции, как и всякие другие, имеют один результат (массив). Элементарные функции могут быть использованы с одинаковым синтаксисом как для чисел, так и для массивов.
Пример 1. Разный тип параметров
» x=-8; X=[5 -1 -2]; A=[1 2 -3; -5 6 7]; z=3-4i;
Различают матричные и поэлементные арифметические операции.
+ – уточнение знака (унарная), сложение;
– – изменение знака (унарная), вычитание;
Поскольку математический смысл операций матричного и поэлементного сложения и вычитания идентичен:
C = A ± B означает
синтаксис матричных и поэлементных операций сложения и вычитания одинаков, в них используются одни и те же символы операций.
* – скалярное матричное умножение;
^ – матричное возведение в степень;
.^ – поэлементное возведение в степень;
– матричное деление слева;
/ – матричное деление справа;
.’ – несопряженное транспонирование (унарная).
Все арифметические операции, за исключением указанных, являются бинарными.
В операциях +, –, .*, ./ и .^ либо оба операнда должны иметь одинаковую размерность, либо один из операндов должен быть скалярной величиной.
» A=[1 2 3; 4 5 6]; B=[7 8 9; 3 2 1];
7.0000 4.0000 3.0000
0.7500 0.4000 0.1667
0.7000 0.8000 0.9000
0.3000 0.2000 0.1000
Для операции * (матричное произведение) матрица-сомножитель2 должна иметь столько строк, сколько столбцов имеет матрица-сомножитель1:
![]() |
Inner matrix dimensions must agree.
Операции транспонирования ‘ и .’ для матриц с действительными коэффициентами абсолютно равнозначны:
Для комплексных чисел и матриц с комплексными коэффициентами операция ‘ дает транспонированную сопряженную матрицу, а операция .’ – транспонированную несопряженную:
» Ac=[1+2i 1+3i 1+4i; 2+3i 2+4i 2+5i];
1.0000 — 2.0000i 2.0000 — 3.0000i
1.0000 — 3.0000i 2.0000 — 4.0000i
1.0000 — 4.0000i 2.0000 — 5.0000i
1.0000 + 2.0000i 2.0000 + 3.0000i
1.0000 + 3.0000i 2.0000 + 4.0000i
1.0000 + 4.0000i 2.0000 + 5.0000i
Операция ^ (матричное возведение в степень) выполняется только для квадратных матриц, и означает умножение матрицы саму на себя заданное число раз (второй операнд обязательно скаляр):
-0.9100 — 3.5442i 0.4163 + 1.6212i
0.6244 + 2.4318i -0.2856 — 1.1124i
генерирует обратную матрицу D -1 .
Операция X/Y эквивалентна X*Y -1 , операция XY – операции X -1 *Y.
Последняя операция широко используется при решении систем линейных уравнений вида
Действительно, представив систему уравнений в матричной форме:
и умножив обе части последнего уравнения на A -1 слева, получим:
A -1 * A * X = A -1 * B,
откуда решение системы уравнений:
Пример. Решить систему уравнений
Решение сводится к набору в интерактивном режиме следующих команд:
Проверку вычисления корней можно выполнить следующим образом:
| – логическое «или» (0|0 – 0, 1|0 – 1, 0|1 – 1, 1|1 – 1);
xor – логическое исключающее «или» (0xor0 – 0, 0xor1 – 1, 1xor0 – 1, 1xor1 – 0);
Если логические операции (а также логические функции) выполняются над действительными числами, то ложью считают число нуль, а истиной – все числа, не равные нулю.
Операции отношения (сравнения)
> – больше; >= – больше или равно; 1
» A=[1 8 3; 6 2 5]; B=[4 3 1; 2 6 8];
» A d 0 , 10 dk ]. Шаг по показателю степени hd= . Отношение двух соседних элементов есть величина постоянная
=10 hd .
10 100 1000 10000
1.0000 2.0000 3.0000 4.0000
zeros – матрица, состоящая из нулей; ones – матрица, состоящая из единиц;
rand – матрица, состоящая из случ. чисел с равномерным распределением;
randn – матрица, состоящая из случ. Чисел с нормальным распределением.
zeros(n) – формирует квадратную матрицу n´n, состоящую из нулей;
zeros(m, n) – формирует матрицу m´n, состоящую из нулей;
(zeros(1, n) – вектор-строка; zeros(m, 1) – вектор-столбец)
zeros(size(A)) – формирует матрицу, состоящую из нулей, той же размерности, что и матрица A.
Формат обращения к функциям ones, rand и randn аналогичный.
Разницу между функциями rand и randn можно показать графически:
» xr=rand(1,100); xrs=sort(xr); bar(xrs)
» yr=randn(1,100); yrs=sort(yr); bar(yrs)
eye(n) – формирует единичную диагональную матрицу n´n.
diag(B) (B – двухмерная матрица) – выделяет главную диагональ матрицы B и помещает ее в вектор-столбец;
diag(x) (x – вектор) – формирует диагональную матрицу, используя вектор x в качестве главной диагонали.
» A=[1 2 3; 4 5 6; 7 8 9];
Манипуляции с матрицами
tril (A) – формирует треугольную матрицу как нижнюю часть от матрицы A;
triu(A) – формирует треугольную матрицу как верхнюю часть от матрицы А.
» A=[1 2 3; 4 5 6; 7 8 9];
lu(A) – разложение Холецкого – заменяет квадратную матрицу A скалярным произведением двух треугольных матриц L и U методом Гаусса:
» A=[1 2 3; 4 5 6; 7 8 9];
0.5714 0.5000 1.0000
7.0000 8.0000 9.0000
inv(A) – возвращает матрицу A -1 , обратную заданной квадратной матрице A;
det(A) – возвращает определитель квадратной матрицы A.
fliplr(A) – поворот матрицы A на 180° в горизонтальном направлении;
flipud(A) – поворот матрицы A на 180° в вертикальном направлении;
rot90(A) – поворот матрицы A на 90° против часовой стрелки;
rot90(A, k) – поворот матрицы A на k*90° против часовой стрелки (k – целое число).
Манипуляции с векторами
cross(x, y) – векторное произведение векторов x и y в трехмерном пространстве;
cross(A, B, dim) – векторное произведение многомерных массивов A и B по размерности dim;
dot(x, y) – скалярное произведение векторов x и y;
dot(A, B, dim) – скал. произведение многомерных массивов A и B по размерности dim.
Длины векторов x и y, а также длина матриц A и B по размерности dim должны быть равны 3.
Базовые операции анализа
Пусть a,b,c – числа, х,у,z – векторы, А,В,C – матрицы.
c=max(a, b) – возвращает максимальное из двух чисел a и b (при комплексных аргументах по умолчанию сравниваются модули):
z=max(x, y) – вектор той же размерности, что x и y, составленный из максимальных элементов векторов;
C=max(A, B) – матрица той же размерности, что и , составленная из максимальных элементов матриц.
xmax=max(x) – максимальный элемент вектора x;
[xmax, imax]=max(x) – дополнительно записывает адрес максимального элемента в числовую переменную imax (если максимальных элементов несколько, возвращается адрес первого из них);
amax=max(A) – возвращает вектор-строку amax из максимальных элементов столбцов матрицы А;
[amax, imax]=max(A) – дополнительно формируется вектор-строка imax, составленный из номеров строк, в которых расположены максимальные элементы столбцов.
» a=1; b=2; x=[1 3 2]; y=[2 1 3]; A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4];
Размерность матрицы matlab
Операции с векторами и матрицами
Создание стандартных матриц
Создание векторов равноотстоящих точек в линейном и логарифмическом масштабах
Создание массивов со случайными элементами
Изменение порядка расположения элементов матриц
Вычисление сумм и произведений
Изменение формы матриц
Выделение треугольных частей матриц
Вычисление тестовых матриц
Матрицы представляют собой самые распространенные объекты системы MATLAB. Ниже описываются основные операции с матрицами. По обилию матричных операторов и функций MATLAB является лидером среди массовых систем компьютерной математики.
Создание матриц с заданными свойствами
Создание единичной матрицы
Для создания единичной матрицы (она обычно обозначается как Е) служит функция eye:
еуе(n) — возвращает единичную матрицу размера nrn;
eye(m.n) или еуе([m n]) — возвращают матрицу размера mm с единицами по диагонали и нулями в остальных ячейках;
eye(size(A)) — возвращает единичную матрицу того же размера, что и А.
Единичная матрица не определена для многомерных массивов. Так, функция у = eye([2,3,4]) при попытке ее вычисления приведет к ошибке.
Пример использования функции eye:
Создание матрицы с единичными элементами
Для создания матриц, все элементы которых — единицы, используется функция ones:
ones(n) — возвращает матрицу размера nхn, все элементы которой — единицы. Если п — не скаляр, то появится сообщение об ошибке;
ones(m.n) или ones([m п]) — возвращают матрицу размера mxn, состоящую из единиц;
ones(dl.d2,d3. ) или ones([dl1 d2 d3. ]) — возвращает массив из единиц с размером d1xd2xd3x. ;
ones(size(A)) — возвращает массив единиц той же размерности и размера, что и А. Матрица с единичными элементами в отличие от единичной матрицы в MATLAB определена и для многомерных массивов.
Создание матрицы с нулевыми элементами
Иногда нужны матрицы, все элементы которых — нули. Следующая функция обеспечивает создание таких матриц:
zeros(п) — возвращает матрицу размера nхn, содержащую нули. Если n — не скаляр, то появится сообщение об ошибке;
zeros(m.n) или zeros([m n]) — возвращают матрицу размера mxn, состоящую из нулей;
zeros(d1.d2,d3. ) или zeros([d1.d2.d3. ]) — возвращают массив из нулей размера d1xd2xd3x. ;
zeros(size(A)) — возвращает массив нулей того же размера и размерности, что и А.
Создание линейного массива равноотстоящих точек
Функция linspace формирует линейный массив равноотстоящих узлов. Это подобно оператору :, но дает прямой контроль над числом точек. Применяется в следующих формах:
llnspace(a.b) — возвращает линейный массив из 100 точек, равномерно распределенных между а и b;
linspace(a,b,n) — генерирует п точек, равномерно распределенных в интервале от а до b.
Columns I through 7
4.0000 5.2308 6.4615 7.6923 8.9231 10.153811.3846
Columns 8 through 14
Создание вектора равноотстоящих в логарифмическом масштабе точек
Функция logspace генерирует вектор равноотстоящих в логарифмическом масштабе точек. Она особенно эффективна при создании вектора частот. Это логарифмический эквивалент оператора : и функции linspace:
logspace(a.b) — возвращает вектор-строку из 50 равноотстоящих в логарифмическом масштабе точек между декадами 10^0 и 10^b;
logspace(a.b.n) — возвращает n точек между декадами 10^a и 10^b;
logspace(a.pi) — возвращает точки в интервале между 10^a и п. Эта функция очень полезна в цифровой обработке сигналов.
Все аргументы функции logspace должны быть скалярными величинами. Пример:
Columns 1 through 7
Columns 8 through 14
Создание массивов со случайными элементами
р = randperm(n) — возвращает случайные перестановки целых чисел 1:n в векторе-строке. Пример:
Функция rand генерирует массивы случайных чисел, значения элементов которых равномерно распределены в промежутке (0, 1):
rand(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;
rand(m.n) или rand([m п]) — возвращают матрицу размера mxn;
rand(m.n,p. ) или rand([m n р. ]) — возвращает многомерный массив;
rand(size(A)) — возвращает массив того же размера и размерности, что и А, с элементами, распределенными по равномерному закону;
rand (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет равномерный закон распределения;
rand(‘ state’) — возвращает вектор с 35 элементами, содержащий текущее состояние генератора случайных чисел с равномерным распределением. Для изменения состояния генератора можно применять следующие формы этой функции:
rand(‘state’ .s) — устанавливает состояние в s;
rand( ‘state’ ,0) — сбрасывает генератор в начальное состояние;
rand( ‘state’. j) — для целых j, устанавливает генератор в j-е состояние;
rand( ‘state’ ,sum(100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.
0.9501 0.8913 0.8214
0.2311 0.7621 0.4447
0.6068 0.4565 0.6154
0.4860 0.0185 0.7919
Проверить равномерность распределения случайных чисел можно, построив большое число точек на плоскости со случайными координатами. Это делается с помощью следующих команд:
Полученный при этом график показан на рис. 10.1. Нетрудно заметить, что точки довольно равномерно распределены на плоскости, так что нет оснований не доверять заданному закону распределения координат точек.
Рис. 10.1. Случайные точки с равномерным распределением координат на плоскости
Функция randn генерирует массив со случайными элементами, распределенными по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением, равным 1:
randn(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;
randn(m.n) или randn([m n]) — возвращают матрицу размера mxn;
randn(m,n,p. ) или randn([m n р. ]) — возвращает массив с элементами, значения которых распределены по нормальному закону;
randn(size(A)) — возвращает массив того же размера, что и А, с элементами, распределенными по нормальному закону;
randn (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет нормальное распределение;
randn( ‘state’) — возвращает двухэлементный вектор, включающий текущее состояние нормального генератора. Для изменения состояния генератора можно применять следующие формы этой функции:
randn(‘state’,s) — устанавливает состояние в s;
randn(‘state’ ,0) — сбрасывает генератор в начальное состояние;
randn(‘state’, j) — для целых j устанавливает генератор в J-e состояние;
randn(‘state’, sum( 100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.
-0.4326 -1.1465 0.3273
-1.6656 1.1909 0.1746
0.1253 1.1892 -0.1867
0.2877 -0.0376 0.7258
Проверить распределение случайных чисел по нормальному закону можно, построив гистограмму распределения большого количества чисел. Например, следующие команды
строят гистограмму (рис. 10.2) из 100 столбцов для 10 000 случайных чисел с нормальным распределением.
Рис. 10.2. Гистограмма для 10 000 нормально распределенных чисел в 100 интервалах
Из рисунка видно, что огибающая гистограммы действительно близка к нормальному закону распределения.
В пакете расширения Statistics Toolbox можно найти множество статистических функций, в том числе для генерации случайных чисел с различными законами распределения и определения их статистических характеристик.
Конкатенацией называют объединение массивов, которое реализует следующая функция.
С = cat (dim, А, В) — объединяет массивы А и В в соответствии со спецификацией размерности dim и возвращает объединенный массив; dim = 1 — горизонтальная конкатенация, dim = 2 — вертикальная, dim = 3 — многомерный массив размерности 3 и т. д.;
С = cat(dim,Al,A2,A3,A4. ) объединяет все входные массивы (А1, А2, A3, А4 и т. д.) в соответствии со спецификацией размерности dim и возвращает объединенный массив;
cat(2.A,B) — это то же самое, что и [А,В],асаt(,А,В) —то же самое, что и [А; В]. При записи cat (dim, С (:)) или cat (dim, С. field) эта функция применима к массивам ячеек или структур, содержащим численные матрицы. Пример:
Создание матриц с заданной диагональю
Свойства матриц сильно зависят от их диагональных элементов. Следующая функция MATLAB позволяет создавать специальные типы матриц с заданными диагональными элементами:
X = diag(v.k) — для вектора v, состоящего из п компонентов, возвращает квадратную матрицу X порядка n+abs(k) с элементами v на k-й диагонали, при k=0 -это главная диагональ (из левого верхнего угла матрицы в правый нижний угол), при k>0 — одна из диагоналей (диагональ в терминологии MATLAB — это линия, параллельная главной диагонали) выше главной диагонали, при k
X = diag(v) — помещает вектор v на главную диагональ (то же. что и в предыдущем случае при k=0);
v = diag(X.k) — для матрицы X возвращает вектор-столбец, состоящий из элементов n-й диагонали матрицы X;
v = diag(X) — возвращает главную диагональ матрицы X (то же, что и в предыдущем случае при k=0).