Progress-servis55.ru

Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Задание функции в matlab

Matlab функции

В программе MATLAB вы будете использовать как встроенные функции, так и
Matlab функции, созданные вами.

Встроенные функции

Программа MATLAB имеет много встроенных функций. В их число входят
функции sqrt, cos, sin, tan, log, exp и atan (для функции арктангенс), а также
более специализированные математические функции, такие как gamma, erf и besselj. Программа MATLAB имеет также некоторые встроенные константы,
включая pi (число п), i (комплексное число i = корень(-1)) и Inf (°° — бесконечность). Ниже показано несколько примеров:

Функция log является натуральным логарифмом и во многих текстах называется In.

Функции, задаваемые пользователем

В этом разделе мы проверим два способа задания ваших собственных функций в
программе MATLAB. Первый способ использует команду inline, а второй
использует оператор @, чтобы создать так называемую «анонимную функцию».
Второй метод является новым в программе MATLAB 7, и в настоящее время этому
методу отдается предпочтение. Периодически мы будем упоминать о команде
inline ради пользователей более ранних версий программы. Однако мы
настоятельно рекомендуем пользователям MATLAB 7 и пользователям более ранних
версий, когда они обновят программу, использовать оператор @ в качестве
обычного метода для задания функций. Функции можно также задавать в
отдельных файлах, которые называются М-файлами (см. главу 3).
В этом примере показано, как задается функция f (x) = х 2 с использованием
этих команд.

Можно сделать и по-другому:

f1 =
Inline function:
f1(x) = х^2

Когда функция задана, не важно каким методом, вы можете ее вычислить, например:

Как мы отмечали ранее, большинство функций программы MATLAB могут
оперировать как векторами, так и скалярами. Чтобы быть уверенным, что заданная
вами функция может оперировать с векторами, вставляйте точки перед
математическими операторами .* ./ и .^ Таким образом, чтобы получить векторизованную версию функции f (x) = х 2 , введите строку

Теперь мы можем вычислить любую функцию для вектора, например:

ans =
1 4 9 16 25

Используя графические возможности программы MATLAB, вы можете начертить
графики функций f и f1. Это можно сделать несколькими способами, которые
мы рассмотрим в разделе «Графика» далее в этом уроке. В завершении этого
раздела отметим, что функции можно также задавать с двумя или более
переменными. Например, решение любой из этих функций

g = @(x, y) x^2 + y^2; g (1, 2);
g1 = inline (‘x^2 + y^2’, ‘x’, ‘y’); g1 (1, 2)

даст ответ 5. Если вместо этого вы зададите функцию следующим образом

тогда вы сможете вычислить векторы; таким образом, выполнение следующего
выражения

дает значения функции в точках (1, 3) и (2, 4).

Поэтому из выше всего сказанного можно сделать вывод, что вам необходимо просмотреть много дополнительной информации и альтернатив!

MATLAB Language Анонимные функции и функции

пример

основы

Анонимные функции являются мощным инструментом языка MATLAB. Это функции, которые существуют локально, то есть: в текущей рабочей области. Однако они не существуют на пути MATLAB, как регулярная функция, например, в m-файле. Вот почему они называются анонимными, хотя они могут иметь имя как переменную в рабочей области.

Оператор @

Используйте оператор @ для создания анонимных функций и функций. Например, чтобы создать дескриптор функции sin (sine) и использовать его как f :

Теперь f является дескриптором функции sin . Как и в реальной жизни, дверная ручка — это способ использовать дверь, функциональная рукоятка — это способ использовать функцию. Для использования f аргументы передаются ему, как если бы это была функция sin :

f принимает любые входные аргументы, которые принимает функция sin . Если sin будет функцией, которая принимает нулевые входные аргументы (а это не так, но другие делают, например, функцию peaks ), f() будет использоваться для вызова без входных аргументов.

Читать еще:  Функция mean matlab

Пользовательские анонимные функции

Анонимные функции одной переменной

Очевидно, не полезно создавать дескриптор существующей функции, такой как sin в приведенном выше примере. В этом примере он является избыточным. Тем не менее, полезно создавать анонимные функции, которые выполняют пользовательские вещи, которые в противном случае нужно было бы повторять несколько раз или создавать отдельную функцию. В качестве примера пользовательской анонимной функции, которая принимает одну переменную в качестве ее ввода, суммируйте синус и косинус в квадрате сигнала:

Теперь f принимает один входной аргумент, называемый x . Это было задано с помощью круглых скобок (. ) непосредственно после оператора @ . f теперь является анонимной функцией x : f(x) . Он используется, передавая значение x в f :

Вектор значений или переменная также может быть передан в f , если они действительным образом используются внутри f :

Анонимные функции более чем одной переменной

Таким же образом анонимные функции могут быть созданы, чтобы принимать более одной переменной. Пример анонимной функции, которая принимает три переменные:

Параметрирование анонимных функций

Переменные в рабочей области могут использоваться в определении анонимных функций. Это называется параметризацией. Например, для использования константы c = 2 в анонимной функции:

f(3) использовала переменную c как параметр для умножения с предоставленным x . Обратите внимание, что если значение c в этой точке задано на что-то другое, тогда вызывается f(3) , результат не будет отличаться. Значение c является значением во время создания анонимной функции:

Входные аргументы для анонимной функции не относятся к переменным рабочего пространства

Обратите внимание, что использование имени переменных в рабочей области в качестве одного из входных аргументов анонимной функции (т. Е. С помощью @(. ) ) не будет использовать значения этих переменных. Вместо этого они рассматриваются как разные переменные в рамках анонимной функции, то есть: анонимная функция имеет свое личное рабочее пространство, где входные переменные никогда не ссылаются на переменные из основного рабочего пространства. Основное рабочее пространство и рабочая область анонимной функции не знают друг о друге. Пример, иллюстрирующий это:

Значение x из основного рабочего пространства не используется в f . Кроме того, в основной рабочей области x осталось нетронутым. В пределах области f имена переменных между круглыми скобками после оператора @ не зависят от основных переменных рабочей области.

Анонимные функции хранятся в переменных

Анонимная функция (или, точнее, дескриптор функции, указывающая на анонимную функцию) сохраняется как любое другое значение в текущем рабочем пространстве: в переменной (как мы это делали выше) в массиве ячеек ( <@(x)x.^2,@(x)x+1>) или даже в свойстве (например, h.ButtonDownFcn для интерактивной графики). Это означает, что анонимную функцию можно рассматривать как любое другое значение. Когда он хранится в переменной, он имеет имя в текущей рабочей области и может быть изменен и очищен так же, как переменные, содержащие числа.

По-разному: дескриптор функции (будь то в форме @sin или для анонимной функции) — это просто значение, которое может быть сохранено в переменной, подобно цифровой матрице.

Расширенное использование

Передающая функция обрабатывает другие функции

Поскольку дескрипторы функций обрабатываются как переменные, они могут быть переданы в функции, которые принимают дескрипторы функций в качестве входных аргументов.

Пример: функция создается в m-файле, который принимает дескриптор функции и скалярное число. Затем он вызывает дескриптор функции, передавая ему 3 а затем добавляет скалярное число к результату. Результат возвращается.

Сохраните его где-нибудь на пути, например, в текущей папке MATLAB. Теперь funHandleDemo можно использовать следующим образом, например:

Читать еще:  Поэлементное умножение матриц matlab

Рукоятка другой существующей функции может быть передана funHandleDemo :

Обратите внимание, что @sin был быстрым способом получить доступ к функции sin без предварительного ее хранения в переменной, используя f = @sin .

Использование bsxfun , cellfun и подобных функций с анонимными функциями

MATLAB имеет встроенные функции, которые принимают анонимные функции в качестве входных данных. Это способ выполнить многие вычисления с минимальным количеством строк кода. Например, bsxfun , который выполняет bsxfun двоичные операции, то есть: он применяет функцию по двум векторам или матрицам bsxfun . Обычно для этого требуется использование for -loops, для которого часто требуется предварительное распределение скорости. Используя bsxfun этот процесс ускоряется. Следующий пример иллюстрирует это, используя tic и toc , две функции, которые можно использовать для временного использования кода. Он вычисляет разницу между каждым элементом матрицы из среднего значения столбца.

Выполнение приведенного выше примера приводит к двум выходам:

Эти строки поступают от функций toc , которые печатают прошедшее время со времени последнего вызова функции tic .

bsxfun применяет функцию в первом аргументе ввода к двум другим входным аргументам. @minus — это длинное имя для той же операции, что и знак минуса. Возможно, была указана другая анонимная функция или дескриптор ( @ ) для любой другой функции, если она принимает A и mean(A) качестве входных данных для создания значимого результата.

Специально для больших объемов данных в больших матрицах bsxfun может значительно ускорить работу. Он также делает код более чистым, хотя его может быть труднее интерпретировать для людей, которые не знают MATLAB или bsxfun . (Обратите внимание, что в MATLAB R2016a и более поздних версиях многие операции, которые ранее использовали bsxfun больше не нуждаются в них, A-mean(A) работает напрямую и может в некоторых случаях быть еще быстрее.)

Основные математические функции MatLab

MatLab содержит в себе все распространенные математические функции, которые доступны по их имени при реализации алгоритмов. Например, функция sqrt() позволяет вычислять квадрат числа и может быть использована в программе следующим образом:

x = 2;
y = 4;
d = sqrt(x^2+y^2); %вычисление евклидового расстояния

Аналогичным образом вызываются и все другие математические функции, представленные в табл. 1.2.

Таблица 1.2. Основные математические функции MatLab

sqrt(x)вычисление квадратного корня
exp(x)возведение в степень числа e
pow2(x)возведение в степень числа 2
log(x)вычисление натурального логарифма
log10(x)вычисление десятичного логарифма
log2(x)вычисление логарифма по основанию 2
sin(x)синус угла x, заданного в радианах
cos(x)косинус угла x, заданного в радианах
tan(x)тангенс угла x, заданного в радианах
cot(x)котангенс угла x, заданного в радианах
asin(x)арксинус
acos(x)арккосинус
atan(x)арктангенс
piчисло пи
round(x)округление до ближайшего целого
fix(x)усечение дробной части числа
floor(x)округление до меньшего целого
ceil(x)округление до большего целого
mod(x)остаток от деления с учётом знака
sign(x)знак числа
factor(x)разложение числа на простые множители
isprime(x)истинно, если число простое
randгенерация псевдослучайного числа с равномерным законом распределения
randnгенерация псевдослучайного числа с нормальным законом распределения
abs(x)вычисление модуля числа

Почти все элементарные функции допускают вычисления и с комплексными аргументами. Например:

res = sin(2+3i)*atan(4i)/(1 — 6i); % res = -1.8009 — 1.9190i

Ниже показан пример задания вектора с именем a, и содержащий значения 1, 2, 3, 4:

a = [1 2 3 4]; % вектор-строка

Для доступа к тому или иному элементу вектора используется следующая конструкция языка:

disp( a(1) ); % отображение значения 1-го элемента вектора
disp( a(2) ); % отображение значения 2-го элемента вектора
disp( a(3) ); % отображение значения 3-го элемента вектора
disp( a(4) ); % отображение значения 4-го элемента вектора

Читать еще:  Matlab команды и функции

т.е. нужно указать имя вектора и в круглых скобках написать номер индекса элемента, с которым предполагается работать. Например, для изменения значения 2-го элемента массива на 10 достаточно записать

a(2) = 10; % изменение значения 2-го элемента на 10

Часто возникает необходимость определения общего числа элементов в векторе, т.е. определения его размера. Это можно сделать, воспользовавшись функцией length() следующим образом:

N = length(a); % (N=4) число элементов массива а

Если требуется задать вектор-столбец, то это можно сделать так

a = [1; 2; 3; 4]; % вектор-столбец

b = [1 2 3 4]’; % вектор-столбец

при этом доступ к элементам векторов осуществляется также как и для векторов-строк.

Следует отметить, что векторы можно составлять не только из отдельных чисел или переменных, но и из векторов. Например, следующий фрагмент программы показывает, как можно создавать один вектор на основе другого:

a = [1 2 3 4]; % начальный вектор a = [1 2 3 4]
b = [a 5 6]; % второй вектор b = [1 2 3 4 5 6]

Здесь вектор b состоит из шести элементов и создан на основе вектора а. Используя этот прием, можно осуществлять увеличение размера векторов в процессе работы программы:

a = [a 5]; % увеличение вектора а на один элемент

Недостатком описанного способа задания (инициализации) векторов является сложность определения векторов больших размеров, состоящих, например, из 100 или 1000 элементов. Чтобы решить данную задачу, в MatLab существуют функции инициализации векторов нулями, единицами или случайными значениями:

a1 = zeros(1, 100); % вектор-строка, 100 элементов с
% нулевыми значениями
a2 = zeros(100, 1); % вектор-столбец, 100 элементов с
% нулевыми значениями
a3 = ones(1, 1000); % вектор-строка, 1000 элементов с
% единичными значениями
a4 = ones(1000, 1); % вектор-столбец, 1000 элементов с
% единичными значениями
a5 = rand(1000, 1); % вектор-столбец, 1000 элементов со
% случайными значениями

Матрицы в MatLab задаются аналогично векторам с той лишь разницей, что указываются обе размерности. Приведем пример инициализации единичной матрицы размером 3х3:

E = [1 0 0; 0 1 0; 0 01]; % единичная матрица 3х3

E = [1 0 0
0 1 0
0 0 1]; % единичная матрица 3х3

Аналогичным образом можно задавать любые другие матрицы, а также использовать приведенные выше функции zeros(), ones() и rand(), например:

A1 = zeros(10,10); % нулевая матрица 10х10 элементов

A2 = zeros(10); % нулевая матрица 10х10 элементов
A3 = ones(5); % матрица 5х5, состоящая из единиц
A4 = rand(100); % матрица 100х100, из случайных чисел

Для доступа к элементам матрицы применяется такой же синтаксис как и для векторов, но с указанием строки и столбца где находится требуемый элемент:

A = [1 2 3;4 5 6;7 8 9]; % матрица 3х3
disp( A(2,1) ); % вывод на экран элемента, стоящего во
% второй строке первого столбца, т.е. 4
disp( A(1,2) ); % вывод на экран элемента, стоящего в
% первой строке второго столбца, т.е. 2

Также возможны операции выделения указанной части матрицы, например:

B1 = A(:,1); % B1 = [1; 4; 7] – выделение первого столбца
B2 = A(2,:); % B2 = [1 2 3] – выделение первой строки
B3 = A(1:2,2:3); % B3 = [2 3; 5 6] – выделение первых двух
% строк и 2-го и 3-го столбцов матрицы А.

Размерность любой матрицы или вектора в MatLab можно определить с помощью функции size(), которая возвращает число строк и столбцов переменной, указанной в качестве аргумента:

a = 5; % переменная а
A = [1 2 3]; % вектор-строка
B = [1 2 3; 4 5 6]; % матрица 2х3
size(a) % 1х1
size(A) % 1х3
size(B) % 2х3

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 9231 — | 7433 — или читать все.

Ссылка на основную публикацию
Adblock
detector