Progress-servis55.ru

Новости из мира ПК
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от теплового излучения

Охрана труда

Защита от источников тепловых излучений

Для защиты от теплового излучения применяются средства коллективной (СКЗ) и индивидуальной (СИЗ) защиты. Классификация СКЗ дана на рис. 2.4. Основными методами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование.

Рис. 2.4. Классификация средств коллективной защиты от тепловых излучений

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,35 кВт/м2, температуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100 °С

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т. д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопроводностью.

Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной.

Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. — и наиболее пригодна для трубопроводов и сосудов.

Засыпная изоляция в основном используется при прокладке трубопроводов в каналах и коробах. Для засыпки применяют, например, керамзит.

Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ.

Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие — мастичные и оберточные материалы.

Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием.

В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску.

Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготовляют в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью (рис. 2.5), что обеспечивает температуру на наружной поверхности экрана не более 30. 35 °С.

Рис. 2.5. Водоохлаждаемый экран для радиационного охлаждения и защиты от теплового облучения рабочих мест: 1 — подвод воды; 2 — сток воды; 3 — перегородки; 4 — переливное окно; 5 — труба с водой для промывки экрана; 6 — полость с перегородками; 7 — полость без перегородок

Полупрозрачные экраны применяют в тех случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3—3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет, используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Прозрачные экраны изготовляют из бесцветных или окрашенных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.

Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов (рис. 2.6). Струя может подаваться сверху, снизу, сбоку и веером.

Рис. 2.6. Устройства воздушного душирования: а — стационарные; б — передвижные

Защита работников от теплового излучения

Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные выше средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 35 Вт/м 2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100°С и не выше 45°С – при температуре внутри источника тепла выше 100°С.

Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/(м·К).

Наиболее простым методом защиты от тепловых излучений является защита расстоянием.

Защита расстоянием от опасного воздействия осуществляется в помещениях с избытками тепла от производственных объектов (печей, топок, реакторов и т.д.). Обычно осуществляется механизацией и автоматизацией производственных процессов, дистанционным управлением ими. Автоматизация процессов не только повышает производительность, но и улучшает условия труда, поскольку работники выводятся из опасной зоны и осуществляют контроль или управление технологическими процессами из помещений с нормальными микроклиматическими условиями.

При температуре воздуха на рабочих местах выше или ниже допустимых величин в целях защиты работающих от возможного перегревания или переохлаждения ограничивают время пребывания на рабочих местах (непрерывно или суммарно за рабочую смену) СанПиН 2.2.4.548–96 [5]. При работе закрытых необогреваемых помещениях в холодное время года при определенных температурах и скоростях движения воздуха устанавливают перерывы для обогревания рабочих.

Одним из самых распространенных способов борьбы с тепловым инфракрасным излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных для ИК излучения экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

Читать еще:  Каким антивирусом почистить компьютер

В прозрачных для ИК излучения экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны классифицируют на теплоотражающие, теплопоглощающие и теплоотводящие.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Оценить эффективность снижения интенсивности от теплового излучения с помощью экранов можно по формуле:

, (3.5)

где Q – интенсивность теплового излучения без применения защиты, Вт/м 2 ;

QЗ – интенсивность теплового излучения с применением защиты, Вт/м 2 .

При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха LПР (м 3 /ч) определяют по формуле:

, (3.6)

где QИЗБ – избыток явного тепла, кДж/ч;

TУД – температура удаляемого воздуха, °С;

TПР – температура приточного воздуха, °С;

ρПР – плотность приточного воздуха, кг/м 3 ;

c – удельная теплоемкость воздуха, кДж/кг×град.

Температуру воздуха, удаляемого из помещения, определяют по формуле:

, (3.7)

где TРЗ – температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, °С;

DT – температурный градиент по высоте помещения, °С/м; (обычно 0,5 – 1,5 °С/м);

Н – расстояние от пола до центра вытяжных проемов, м;

2 – высота рабочей зоны, м.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 11083 — | 8252 — или читать все.

Тепловое излучение и защита от него

Лабораторная работа №7

Оценка эффективности экранов для защиты от теплового излучения

Цель работы

Определение интенсивности теплового облучения на рабочем месте и оценка эффективности защитных экранов.

Содержание работы

1. Измерить интенсивность теплового облучения на разных расстояниях от источника излучения:

а) при отсутствии защитных экранов;

б) при наличии защитного теплопоглощающего экрана — цепной завесы;

в) при наличии защитного теплоотводящего экрана — водяной завесы.

2. Измерить температуру источника излучения.

3. Рассчитать интенсивность теплового облучения в точках измерения при отсутствии защитных экранов и при наличии водяной завесы.

4. Рассчитать длину волны с максимальной энергией теплового излучения.

5. Рассчитать коэффициенты эффективности защитных экранов.

Тепловое излучение и защита от него

Процессы теплопередачи имеют широкое распространение в тепловой и атомной энергетике, ракетно-космической технике, металлургии, химической технологии, светотехнике, гелиотехнике и др.

Перенос теплоты от нагретых тел в окружающем пространстве осуществляется по законам теплопроводности, конвективного теплообмена и теплообмена излучением.

В отличие теплопроводности и конвекции, где плотность теплового потока зависит от температуры в первой степени, перенос энергии излучением определяется четвертой степенью абсолютной температуры. Вследствие этого при высоких температурах основным видом переноса теплоты является излучение.

При температурах 500°С около 60-90% всей теплоты, выделяемой производственным оборудованием и материалами, распространяется в окружающем пространстве путем излучения. При этом энергия излученияпроходит воздушную среду практически без потерь, снова превращаясь в тепловую энергию облучаемых тел.

Основополагающие законы теплового излучения были установлены физиками в конце 19 века и носят их имена.

Закон Стефана-Больцмана выражает зависимость плотности теплового излучения абсолютно черного тела от абсолютной температуры в четвертой степени

С = s Т 4 = Со (Т/100) 4 , (1)

где s, Со — постоянная и коэффициент излучения абсолютно черного тела (Со = 10 8 s = 5,67 [ Вт/м 2 К 4 ]). На практике приходится иметь дело с серыми телами, для них закон Стефана-Больцмана имеет вид:

Еi = ei e= С (Т/100 ) 4 , (2)

где ei=Ei/e — степень черноты i-го тела (0 2 К 4 ].

3акон Планка устанавливает связь спектральной плотности теплового излучения абсолютно черного тела Iol [Вт/м 2 ], с длиной волны излучения [м] и абсолютной температурой тела:

В этом выражении: C1=3,74×10 -18 [Вт/м 2 ] и С2=1,44×10 [м×К] — постоянные излучения.

Графически закон Планка представлен на рис.1.

В.Вин в 1893 году установил, что произведение абсолютной температуры тела на длину вечны максимальной энергии теплового излучения есть величина постоянная:

Это выражение получило название закона смещения Вина: с ростом температуры максимум спектральной плот-ности потока излучения смещается в коротковолновую область.

Расчет теплообмена излучением между двумя телами является сложной задачей. В общем случае поток энергии между телами определяется температурами тел, их формами, размерами и состоянием поверхностей, взаимным расположением в пространстве и расстоянием между ними. Аналитически эту зависимость можно представить в виде:

S1, S2 — площади поверхностей теплоизлучающего и теплопринимающего тел [м 2 ];

j1,2 = Q2/Q1 — коэффициент облученности, показывающий какая доля энергии излучения первого тела (Q1) попадает на второе тело (Q2). Коэффициент облученности можно рассчитать по законам геометрической оптики или взять из справочной литературы.

При длительном пребывании человека в зоне лучистого потока теплоты происходит нарушение теплового баланса в его организме, что может вызвать заболевание, называемое тепловой гипотермией (перегревом). В нормальных условиях в организме человека поддерживаются стабильные и постоянные условия для функционирования биологических клеток. Это явление называется гомеостазом. Одним из механизмов гомеостаза является система поддержания постоянства внутренней температуры тела человека. Если гомеостатическая система поддержания постоянства температуры организма не справляется с рассеянием избыточного поступающего тепла наступает гипотермия. При этом нарушаются и другие защитные гомеостатические функции организма. Поэтому это заболевание характеризуется не только повышением температуры тела, но и обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, изменением зрительных ощущений, шумом в ушах и, зачастую, потерей сознания.

Читать еще:  Правовой режим защиты систем электронного документооборота

Гомеостатические системы поддержания стабильности жизнедеятельности организма связаны между собой и помогают друг другу преодолевать отрицательные внешние воздействия иногда заменяя вышедшие из строя. Поэтому даже при уровнях теплового излучения, не вызывающих гипотермию наблюдается ослабление внимания, замедление реакций, ухудшение координации движений, что в свою очередь приводит к снижению производительности труда.

Тепловой эффект воздействия облучения зависит от многих факторов. Интенсивность облучения менее 700 Вт/м не вызывает у человека неприятного ощущения, если действует несколько минут; свыше 3500 Вт/м — уже через 2 с вызывает жжение, а через 5 с возможен тепловой удар. Производственные источники по характеру спектрального излученияусловно можно разделить на четыре группы:

1) с температурой излучающей поверхности до 500 °С (паропроводы, сушильные установки, низкотемпературные аппараты, наружная поверхность различных печей и др.); их спектр содержит длинные инфракрасные лучи (длина волны 3,7 — 9, 3 мкм);

2) с температурой поверхности от 500 до 1300 °С (открытое пламя, открытые проемы нагревательных печей и топок, нагретый металл — слитки, заготовки, расплавленные чугун и бронза и др.); их спектр содержит преимущественно инфракрасные лучи (1,9-3,7 мкм), но появляются и видимые лучи;

3) с температурой 1300-1800 °С (открытые проемы плавильных печей, расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких (1,2-1,9 мкм ), так и видимые большой яркости;

4) с температурой выше 1800 °С (пламя электродуговых печей, сварочных аппаратов и др.) их спектр излучения содержит наряду с инфракрасными (0,8-1,2 мкм) и видимыми (0,4-0,8 мкм ) также и ультрафиолетовые лучи.

Существуют следующие способы защиты от вредного воздействия теплового излучения: тепловая изоляция нагретых поверхностей, экранирование источников теплового излучения, применение воздушного душирования, удаление от источника теплового излучения (дистанционное управление), сокращение времени пребывания в зоне воздействия теплового излучения, использование средств индивидуальной защиты (защитные очки, маски, одежда).

Наиболее распространенным и эффективным способом защиты от теплового излучения является экранирование — создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых, полупрозрачных водяных, воздушно-водяных и др.). Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. В свою очередь, по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К теплоотражающим экранам относятся жесткие глухие преграды, изготовленные из материалов с высокой степенью отражения такие, как алюминий листовой, белая жесть, альфоль (алюминиевая фольга), а также закаленные стекла с пленочным покрытием. В последнее время получила распространение вакуумно-многослойная изоляция, изготовленная из множества полированных металлических пластин с зазорами, из которых откачен воздух. Эти экраны отличает высокая эффективность (отражается до 58% излучения), малая масса, экономичность. Однако, эти экраны не выдерживают высоких механических нагрузок, эффективность их существенно снижается при отложении на них пыли, при окислении.

В настоящее время нашли широкое применение экраны, выполненные из металлической плотной сетки или из металлических мелких цепей, подвешенных против излучающего проема в один или несколько рядов. Хотя цепные экраны не могут защищать от излучения так хорошо, как глухие (цепные завесы снижают тепловой поток на 60-70%), их применение в ряде случаев оправдано, поскольку они позволяют наблюдать за ходом технологического процесса.

Теплоотводящие экраны (водяные и вододисперсные завесы) применяют в тех случаях, когда через экран необходимо вводить инструмент или заготовки. Коэффициент эффективности водяных завес в значительной степени зависит от спектрального состава излучения м толщины слоя и может достигать 80%. Экраны в виде водяной пленки, стекающей по стеклу более устойчивы по сравнению со свободными водяными завесами. Их эффективность порядка 90%.

В определении оптимальных условий защиты от теплового излучения важное значение имеет характер его спектрального состава, так как материал экрана должен поглотить или отразить лучи, несущие максимум энергии. Как видно из рис.2 для организации эффективной защиты от теплового излучения необходимо устранить в лучистом потоке по возможности наибольший диапазон длинноволнового излучения, которое хорошо поглощается поверхностью кожи человека.

В этом отношении хорошо зарекомендовали себя прозрачные водяные завесы в виде сплошной тонкой водяной пленки, образующейся при равномерном стекании воды с гладкой поверхности.

Вода является активным поглотителем инфракрасных лучей. Наиболее сильное поглощение отмечается в зоне лучей с длиной волны l=1,5-6,0 мкм.

Слой воды толщиной 1мм полностью поглощает участок спектра с l= 3 мкм, а слой 10 мм — тепловой поток с длиной волны l= 1,5 мкм.

Таким образом, слой воды, применяемый в защитных экранах, должен иметь толщину порядка нескольких мм, при этом однако коротковолновое излучение высокотемпературных источников не будет поглощено, что проявляется, например, в видимости светового излучения: являющегося коротковолновой части теплового излучения. Поэтому тонкие водяные завесы эффективны в основном для экранирования излучений от низкотемпературных источников (до 800 °С ).

Интенсивность теплового облучения Е [Вт/м 2 ], которому подвергается человек применительно к условиям данного лабораторного стенда, можно оценить по приближенной формуле:

где S — площадь излучающей поверхности, м 2 ;

Тизл — температура излучающей поверхности, К;

Тобл — температура облучаемой части тел, К (для приближенного расчета можно принять Тобл = 309 К, то есть =36 °С);

Читать еще:  Система противоаварийной автоматической защиты

L — расстояние от источника излучения, м.

Формула (6 ) верна при условии L ³ .

Расчет интенсивности облучения при наличии водяной завесы построен на принципе ослабления лучистого потока при прохождении через мутную среду с определенным оптическим показателем.

Уравнение поглощения лучистой энергии какой-либо средой имеет вид

где Е, Ео — интенсивность теплового облучения в данной точке при наличии и отсутствие завесы соответственно, Вт/м 2 ;

d — опытный коэффициент ослабления потока излучений мутной средой, равный для водяной завесы 1,3 мм -1 ;

d — толщина завесы, мм (при работе принять = 1мм).

В плоско-параллельной системе тел и экранов легко получается формула для определения снижения интенсивности лучистого теплообмена. В этом случае между двумя телами со степенью черноты e= e1 = e2 за счет установки между ними экранов со степенью черноты eэ#e теплообмен уменьшается:

Коэффициент эффективности защитного теплового экрана в общем случае можно рассчитать по формуле :

где Ео и Еэ — соответственно интенсивность облучения в данной точке при отсутствии и наличии экрана, Вт/м 2 .

Согласно требованиям ГОСТ 12.4.123-83 допустимая интенсивность телового облучения человека на рабочем месте Е не должна превышать 350 Вт/м 2 .

Защита от источников тепловых излучений.

Тепловым излучениемназывается процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т. е. при соприкосновении с поверхностями нагретых тел.

В результате поглощения телом человека падающей энергии (от печей, раскаленных слитков) повышается температура кожи и глубже лежащих слоев на облучаемом участке. Под влиянием облучения в организме происходят биохимические сдвиги, наступает нарушение сердечно-сосудистой и нервной системы, могут возникнуть заболевания глаз (катаракта), т.к. излучение наиболее неблагоприятно для органов с плохим кровообращением (хрусталик глаза).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100 °С, температура на поверхности не должна превышать 35 °С.

Допустимая величина интенсивности излучения составляет от 35 до 140 Вт/м 2 (ГОСТ 12.1.005-88) — такое тепловое излучение переносится человеком неограниченно долго.

Для сравнения: примеры интенсивности тепловых излучений:

1) солнечный полдень — 700-800 Вт/м 2 ;

2) заливка стали в формы — 12000 Вт/м 2 .

Средства защиты:

1. Теплоизоляция (войлок, минеральная вата). Толщина теплоизоляции должна быть такой, чтобы температура снаружи ее была не более 45˚ С (СН 245-71).

Теплоизоляция — это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Теплоизоляцию можно разделить по следующим типам, соответствующим разным способам теплопередачи:

— отражающая, которая предотвращает потери за счёт инфракрасного «теплового» излучения;

— теплоизоляция, предотвращающая потери за счёт теплопроводности.

Теплоизоляция применяется для замедления нагрева или охлаждения всюду, где необходимо поддерживать заданную температуру,

Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, — теплоизоляторы (материалы из стекловолокна, вспененный полиэтилен высокого давления). Теплоизоляторы отличаются неоднородной структурой и высокой пористостью. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями.

2 Экранирование тепловых излучений (кварцевое стекло, металлическая сетка, цепные завесы, водяные завесы).

Для защиты от инфракрасного излучения применяются следующие экраны: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Полупрозрачные экраны изготовляют из металлической сетки, цепей, армированного стальной сеткой стекла и применяются: сетки — при интенсивности излучения 350 — 1000 Вт/м 2 , цепные завесы и армированное стекло — 700 — 5000 Вт/м 2 . Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

Прозрачные экраны могут быть теплопоглощающими и теплоотводящими. Теплопоглощающие экраны изготовляют из силикатных, кварцевых и органических стекол, бесцветных, окрашенных или металлизированных тонкими пленками.

Теплоотводящие экраны — водяные завесы — образуются слоем воды или распыленной водой. Водяные завесы применяются при интенсивности излучения 350 -1400 Вт/м 2

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Оценить эффективность защиты от теплового излучения с помощью экранов можно по формуле:

где Q — интенсивность теплового излучения без применения защиты, Вт/м 2

Q3 — интенсивность теплового излучения с применением защиты, Вт/м 2 .

Ссылка на основную публикацию
Adblock
detector
×
×